Dissipative phase transition in systems with two-photon drive and
nonlinear dissipation near the critical point
- URL: http://arxiv.org/abs/2104.11669v2
- Date: Wed, 19 May 2021 10:58:40 GMT
- Title: Dissipative phase transition in systems with two-photon drive and
nonlinear dissipation near the critical point
- Authors: V.Yu. Mylnikov, S.O. Potashin, G.S. Sokolovskii, and N.S. Averkiev
- Abstract summary: We study dissipative phase transition near the critical point for a system with two-photon driving and nonlinear dissipation.
The proposed mean-field theory explicitly takes into account quantum fluctuations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study dissipative phase transition near the critical point for a system
with two-photon driving and nonlinear dissipation. The proposed mean-field
theory, which explicitly takes into account quantum fluctuations, allowed us to
describe properly the evolution dynamics of the system and to demonstrate the
new effects in the steady-state. We show that the presence of quantum
fluctuations leads to a power-law dependence of the anomalous average at the
phase transition point, with which the critical exponent is associated. Also,
we investigate the effect of the quantum fluctuations on the critical point
renormalization and demonstrate the existence of a two-photon pump threshold.
It is noteworthy that the obtained results are in a good agreement with the
numerical simulations.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [0.7499722271664147]
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model.
We find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation.
Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems.
arXiv Detail & Related papers (2023-11-19T15:13:57Z) - Emergent equilibrium and quantum criticality in a two-photon dissipative oscillator [0.0]
We study the dissipative phase transition in a quantum oscillator with two-photon drive and two-photon dissipation.
We construct a theory of non-perturbative quantum fluctuations and go beyond the semi-classical approximation.
We provide a description of the quantum critical region and obtain critical exponents that appear to be in very good agreement with numerical simulations.
arXiv Detail & Related papers (2023-11-01T05:03:44Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Diverging current fluctuations in critical Kerr resonators [0.0]
We study a driven-dissipative nonlinear cavity with both continuous and discontinuous quantum phase transitions.
Considering both direct photodetection and homodyne detection schemes, we find that the current fluctuations diverge exponentially at the discontinuous phase transition.
Our findings highlight the rich features of current fluctuations near nonequilibrium phase transitions in quantum-optical systems.
arXiv Detail & Related papers (2022-05-05T13:01:33Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.