Theory of waveguide-QED with moving emitters
- URL: http://arxiv.org/abs/2003.09221v2
- Date: Tue, 28 Jul 2020 14:22:40 GMT
- Title: Theory of waveguide-QED with moving emitters
- Authors: Eduardo S\'anchez-Burillo, Alejandro Gonz\'alez-Tudela, Carlos
Gonzalez-Ballestero
- Abstract summary: We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically study a system composed by a waveguide and a moving quantum
emitter in the single excitation subspace, treating the emitter motional degree
of freedom quantum mechanically. We first characterize single-photon scattering
off a single moving quantum emitter, showing both nonreciprocal transmission
and recoil-induced reduction of the quantum emitter motional energy. We then
characterize the bound states within the bandgap, which display a
motion-induced asymmetric phase in real space. We also demonstrate how these
bound states form a continuous band with exotic dispersion relations. Finally,
we study the spontaneous emission of an initially excited quantum emitter with
various initial momentum distributions, finding strong deviations with respect
to the static emitter counterpart both in the occupation dynamics and in the
spatial distribution of the emitted photons. Our work extends the waveguide-QED
toolbox by including the quantum motional degree of freedom of emitters, whose
impact in the few-photon dynamics could be harnessed for quantum technologies.
Related papers
- Correlated emission lasing in a single quantum dot embedded inside a bimodal photonic crystal cavity [0.0]
We investigate the phenomenon of correlated emission lasing in a coherently driven single quantum dot coupled to a bimodal photonic crystal cavity.
To account for exciton-phonon interactions, we incorporate a non-perturbative approach through a polaron transformed master equation.
arXiv Detail & Related papers (2024-11-18T17:15:54Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Quantum Multiphoton Rabi Oscillations in Waveguide QED [0.0]
Future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED.
One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations.
We analytically explore the scattering dynamics of the photonic Fock state as it interfaces with a two-level emitter.
arXiv Detail & Related papers (2023-10-24T00:03:38Z) - Waveguide QED with Quadratic Light-Matter Interactions [0.0]
We show that a single quadratically-coupled emitter can implement a two-photon logic gate with unit fidelity.
This unlocks new opportunities in quantum information processing with propagating photons.
arXiv Detail & Related papers (2023-03-13T18:01:44Z) - Effects of spatial quantization and Rabi-shifted resonances in single
and double excitation of quantum wells and wires induced by few-photon
optical field [0.0]
We study the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire of finite size.
The eigenenergies and eigenfunctions of the coupled exciton-photon states in a multiatomic system are found.
The role of spatial confinement as well as the energy quantization effects in 1D and 2D cases is analyzed.
arXiv Detail & Related papers (2021-12-08T10:39:33Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.