A Survey of Modern Deep Learning based Object Detection Models
- URL: http://arxiv.org/abs/2104.11892v1
- Date: Sat, 24 Apr 2021 06:33:54 GMT
- Title: A Survey of Modern Deep Learning based Object Detection Models
- Authors: Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam, Nadia
Kanwal, Mamoona Asghar, and Brian Lee
- Abstract summary: This article surveys recent developments in deep learning based object detectors.
It provides an overview of benchmark datasets and evaluation metrics used in detection.
It also covers contemporary lightweight classification models used on edge devices.
- Score: 0.7388859384645263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object Detection is the task of classification and localization of objects in
an image or video. It has gained prominence in recent years due to its
widespread applications. This article surveys recent developments in deep
learning based object detectors. Concise overview of benchmark datasets and
evaluation metrics used in detection is also provided along with some of the
prominent backbone architectures used in recognition tasks. It also covers
contemporary lightweight classification models used on edge devices. Lastly, we
compare the performances of these architectures on multiple metrics.
Related papers
- Towards Reflected Object Detection: A Benchmark [5.981658448641905]
This paper introduces a benchmark specifically designed for Reflected Object Detection.
Our Reflected Object Detection dataset (RODD) features a diverse collection of images showcasing reflected objects in various contexts.
RODD encompasses 10 categories and includes 21,059 images of real and reflected objects across different backgrounds.
arXiv Detail & Related papers (2024-07-08T03:16:05Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
The quality of the features extracted by the backbone architecture can have a significant impact on the overall detection performance.
Our study evaluates three well-known autonomous vehicle datasets, namely KITTI, NuScenes, and BDD, to compare the performance of different backbone architectures on object detection tasks.
arXiv Detail & Related papers (2023-09-15T17:32:15Z) - On Hyperbolic Embeddings in 2D Object Detection [76.12912000278322]
We study whether a hyperbolic geometry better matches the underlying structure of the object classification space.
We incorporate a hyperbolic classifier in two-stage, keypoint-based, and transformer-based object detection architectures.
We observe categorical class hierarchies emerging in the structure of the classification space, resulting in lower classification errors and boosting the overall object detection performance.
arXiv Detail & Related papers (2022-03-15T16:43:40Z) - Few-Shot Object Detection: A Survey [4.266990593059534]
Few-shot object detection aims to learn from few object instances of new categories in the target domain.
We categorize approaches according to their training scheme and architectural layout.
We introduce commonly used datasets and their evaluation protocols and analyze reported benchmark results.
arXiv Detail & Related papers (2021-12-22T07:08:53Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - Class-agnostic Object Detection [16.97782147401037]
We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes.
Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes.
We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain.
arXiv Detail & Related papers (2020-11-28T19:22:38Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Cross-Supervised Object Detection [42.783400918552765]
We show how to build better object detectors from weakly labeled images of new categories by leveraging knowledge learned from fully labeled base categories.
We propose a unified framework that combines a detection head trained from instance-level annotations and a recognition head learned from image-level annotations.
arXiv Detail & Related papers (2020-06-26T15:33:48Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.