論文の概要: Modeling Coverage for Non-Autoregressive Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2104.11897v1
- Date: Sat, 24 Apr 2021 07:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 14:45:53.380713
- Title: Modeling Coverage for Non-Autoregressive Neural Machine Translation
- Title(参考訳): 非自己回帰型ニューラルマシン翻訳のモデル化カバレッジ
- Authors: Yong Shan, Yang Feng, Chenze Shao
- Abstract要約: 本稿では,トークンレベルのカバレッジ反復改良機構と文レベルのカバレッジ契約により,カバレッジ情報を直接モデル化するための新しいカバレッジNATを提案する。
WMT14 En-De および WMT16 En-Ro 翻訳タスクの実験結果から,本手法はこれらの誤りを軽減し,ベースラインシステムに対して強い改善が達成できることが示された。
- 参考スコア(独自算出の注目度): 9.173385214565451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Autoregressive Neural Machine Translation (NAT) has achieved significant
inference speedup by generating all tokens simultaneously. Despite its high
efficiency, NAT usually suffers from two kinds of translation errors:
over-translation (e.g. repeated tokens) and under-translation (e.g. missing
translations), which eventually limits the translation quality. In this paper,
we argue that these issues of NAT can be addressed through coverage modeling,
which has been proved to be useful in autoregressive decoding. We propose a
novel Coverage-NAT to model the coverage information directly by a token-level
coverage iterative refinement mechanism and a sentence-level coverage
agreement, which can remind the model if a source token has been translated or
not and improve the semantics consistency between the translation and the
source, respectively. Experimental results on WMT14 En-De and WMT16 En-Ro
translation tasks show that our method can alleviate those errors and achieve
strong improvements over the baseline system.
- Abstract(参考訳): non-autoregressive neural machine translation(nat)は、すべてのトークンを同時に生成することで、大幅な推論速度向上を達成した。
高い効率にもかかわらず、NATは通常2種類の翻訳エラーに悩まされる。
繰り返しトークン)とアンダー翻訳(例)
翻訳を欠く) 最終的に翻訳の質を制限します
本稿では,これらのNATの問題は,自己回帰復号化に有用であることが証明されたカバレッジ・モデリングによって解決可能であることを論じる。
本稿では,トークンレベルの反復的カバレッジ改善機構と文レベルのカバレッジ合意によって,そのカバレッジ情報を直接モデル化する新しいカバレッジNATを提案し,ソーストークンが翻訳されたかどうかをモデルに思い出させ,翻訳とソース間のセマンティクスの整合性を改善する。
WMT14 En-De および WMT16 En-Ro 翻訳タスクの実験結果から,本手法はこれらの誤りを軽減し,ベースラインシステムに対して強い改善が達成できることが示された。
関連論文リスト
- DiffNorm: Self-Supervised Normalization for Non-autoregressive Speech-to-speech Translation [29.76274107159478]
非自己回帰変換器(NAT)は音声から音声への直接変換システムに適用される。
拡散に基づく正規化戦略であるDiffNormを導入し、NATモデルをトレーニングするためのデータ分散を簡単にする。
CVSSベンチマークでは,英語・スペイン語(En-Es)では+7ASR-BLEU,英語・フランス語(En-Fr)では+2ASR-BLEUが顕著に改善した。
論文 参考訳(メタデータ) (2024-05-22T01:10:39Z) - Revisiting Non-Autoregressive Translation at Scale [76.93869248715664]
スケーリングが非自己回帰翻訳(NAT)行動に与える影響を系統的に研究する。
我々は、NATモデルの一般的な弱さを緩和し、結果として翻訳性能が向上することを示した。
我々は、スケールされたデータセット上でスケールされたNATモデルを検証することで、新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2023-05-25T15:22:47Z) - Non-Autoregressive Document-Level Machine Translation [35.48195990457836]
非自己回帰翻訳(NAT)モデルは、自己回帰翻訳(AT)モデルと比較して、同等の性能と優れた速度を達成する。
しかし、それらの能力は文書レベルの機械翻訳(MT)では探索されていない。
本稿では,ソースとターゲット間の文アライメントの簡易かつ効果的な設計を提案する。
論文 参考訳(メタデータ) (2023-05-22T09:59:59Z) - TransFool: An Adversarial Attack against Neural Machine Translation
Models [49.50163349643615]
敵攻撃に対するニューラルネットワーク翻訳(NMT)モデルの脆弱性を調査し,TransFoolと呼ばれる新たな攻撃アルゴリズムを提案する。
クリーンなサンプルと高いレベルのセマンティックな類似性を保ったソースコード言語で、流動的な逆の例を生成する。
自動的および人的評価に基づいて、TransFoolは、既存の攻撃と比較して成功率、意味的類似性、流布率の改善につながる。
論文 参考訳(メタデータ) (2023-02-02T08:35:34Z) - Candidate Soups: Fusing Candidate Results Improves Translation Quality
for Non-Autoregressive Translation [15.332496335303189]
非自己回帰翻訳(NAT)モデルは、自己回帰翻訳(AT)モデルよりもはるかに高速な推論速度を達成する。
既存のNATメソッドはNATモデルの性能改善にのみフォーカスするが、完全には利用しない。
そこで我々は,高品質な翻訳を実現するための,シンプルだが効果的な手法"Candidate Soups"を提案する。
論文 参考訳(メタデータ) (2023-01-27T02:39:42Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z) - Sequence-Level Training for Non-Autoregressive Neural Machine
Translation [33.17341980163439]
非自己回帰ニューラルネットワーク変換(NAT)は自己回帰機構を取り除き、大幅なデコード高速化を実現する。
本研究では,NATの出力を全体として評価し,実際の翻訳品質とよく相関するNATモデルをトレーニングするためのシーケンスレベルのトレーニング目標を提案する。
論文 参考訳(メタデータ) (2021-06-15T13:30:09Z) - Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade [47.97977478431973]
NAT(Fullly non-autoregressive neural Machine Translation)は、ニューラルネットワークのシングルフォワードでトークンを同時に予測する手法である。
この作業では、レイテンシのアドバンテージを維持しながら、パフォーマンスのギャップを縮めることを目標としています。
論文 参考訳(メタデータ) (2020-12-31T18:52:59Z) - Understanding and Improving Lexical Choice in Non-Autoregressive
Translation [98.11249019844281]
低周波ワードの有用な情報を復元するために、生データをNATモデルに公開することを提案する。
提案手法は,WMT14英語-ドイツ語とWMT16ルーマニア英語-英語データセットのSOTA NAT性能を27.8BLEU点,33.8BLEU点まで向上させる。
論文 参考訳(メタデータ) (2020-12-29T03:18:50Z) - LAVA NAT: A Non-Autoregressive Translation Model with Look-Around
Decoding and Vocabulary Attention [54.18121922040521]
非自己回帰翻訳(NAT)モデルは、1つの前方通過で複数のトークンを生成する。
これらのNATモデルは、しばしば多重性の問題に悩まされ、重複トークンや欠落トークンを生成する。
本稿では,この問題を解決するための新しい方法として,Look-Around(LA)戦略とVocabulary Attention(VA)メカニズムを提案する。
論文 参考訳(メタデータ) (2020-02-08T04:11:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。