論文の概要: A novel segmentation dataset for signatures on bank checks
- arxiv url: http://arxiv.org/abs/2104.12203v2
- Date: Wed, 28 Apr 2021 11:06:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 11:10:46.594208
- Title: A novel segmentation dataset for signatures on bank checks
- Title(参考訳): 銀行小切手の署名のための新しいセグメンテーションデータセット
- Authors: Muhammad Saif Ullah Khan
- Abstract要約: データセットは、非常に複雑な背景を持つ銀行小切手やその他の類似文書から署名を抽出するためのネットワークのトレーニングとテストのために作成されました。
銀行のチェックの画像は、他の公開可能なチェックデータセット、インターネット上で公開されているイメージ、実際のチェックのスキャンとイメージなど、さまざまなソースから取得された。
データセットは、非常に複雑な背景を持つ銀行小切手やその他の類似文書から署名を抽出するためのネットワークのトレーニングとテストのために作成されました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The dataset presented provides high-resolution images of real, filled out
bank checks containing various complex backgrounds, and handwritten text and
signatures in the respective fields, along with both pixel-level and
patch-level segmentation masks for the signatures on the checks. The images of
bank checks were obtained from different sources, including other publicly
available check datasets, publicly available images on the internet, as well as
scans and images of real checks. Using the GIMP graphics software, pixel-level
segmentation masks for signatures on these checks were manually generated as
binary images. An automated script was then used to generate patch-level masks.
The dataset was created to train and test networks for extracting signatures
from bank checks and other similar documents with very complex backgrounds.
- Abstract(参考訳): 提示されたデータセットは、さまざまな複雑な背景を含むバンクチェックと、各フィールドで手書きのテキストとシグネチャ、およびチェックのシグネチャ用のピクセルレベルとパッチレベルのセグネチャマスクの高解像度画像を提供する。
銀行のチェックの画像は、他の公開可能なチェックデータセット、インターネット上で公開されているイメージ、実際のチェックのスキャンとイメージなど、さまざまなソースから取得された。
GIMPグラフィックスソフトウェアを用いて、これらのチェックの署名のためのピクセルレベルのセグメンテーションマスクを手動でバイナリ画像として生成した。
その後、自動スクリプトを使用してパッチレベルのマスクを生成する。
データセットは、銀行小切手やその他の非常に複雑な背景を持つ類似文書から署名を抽出するためのネットワークのトレーニングとテストのために作成された。
関連論文リスト
- Hespi: A pipeline for automatically detecting information from hebarium specimen sheets [6.749750044497731]
Hespiは、デジタル画像から、ハーバリウム標本の機関ラベルの収集データのカタログ前サブセットを抽出する。
パイプラインはテキストベースの機関ラベルを印刷、タイプ、手書き、または組み合わせとして分類する。
Hespiは、国際的な草原から標本シート画像を含むテストデータセットのテキストを正確に検出し、抽出する。
論文 参考訳(メタデータ) (2024-10-11T11:59:40Z) - Don't Look into the Dark: Latent Codes for Pluralistic Image Inpainting [8.572133295533643]
本稿では,離散潜在符号の生成枠組みに基づく大規模マスク多元画像の描画手法を提案する。
本手法は,画像の可視な場所でのみ計算を行うことで,トークンとして識別された遅延先行を学習する。
論文 参考訳(メタデータ) (2024-03-27T01:28:36Z) - UniGS: Unified Representation for Image Generation and Segmentation [105.08152635402858]
カラーマップを使用してエンティティレベルのマスクを表現し、さまざまなエンティティ番号の課題に対処します。
マスク表現を支援するために、位置認識カラーパレットとプログレッシブ二分法モジュールを含む2つの新しいモジュールが提案されている。
論文 参考訳(メタデータ) (2023-12-04T15:59:27Z) - DocMAE: Document Image Rectification via Self-supervised Representation
Learning [144.44748607192147]
文書画像修正のための新しい自己教師型フレームワークDocMAEを提案する。
まず、背景を除いた文書画像のランダムなパッチをマスクし、欠落したピクセルを再構成する。
このような自己教師型学習手法により、ネットワークは変形文書の本質的な構造を学習することが奨励される。
論文 参考訳(メタデータ) (2023-04-20T14:27:15Z) - StrucTexTv2: Masked Visual-Textual Prediction for Document Image
Pre-training [64.37272287179661]
StrucTexTv2は、効果的なドキュメントイメージ事前トレーニングフレームワークである。
マスク付き画像モデリングとマスク付き言語モデリングの2つの自己教師付き事前訓練タスクで構成されている。
画像分類、レイアウト解析、テーブル構造認識、ドキュメントOCR、情報抽出など、さまざまな下流タスクにおいて、競合的あるいは新しい最先端パフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-03-01T07:32:51Z) - MaskSketch: Unpaired Structure-guided Masked Image Generation [56.88038469743742]
MaskSketchは、サンプリング中の余分な条件信号としてガイドスケッチを使用して生成結果の空間的条件付けを可能にする画像生成方法である。
マスク付き生成変換器の中間自己アテンションマップが入力画像の重要な構造情報を符号化していることを示す。
以上の結果から,MaskSketchは誘導構造に対する高画像リアリズムと忠実性を実現する。
論文 参考訳(メタデータ) (2023-02-10T20:27:02Z) - SceneComposer: Any-Level Semantic Image Synthesis [80.55876413285587]
任意の精度のセマンティックレイアウトから条件付き画像合成のための新しいフレームワークを提案する。
このフレームワークは、形状情報のない最低レベルのテキスト・トゥ・イメージ(T2I)に自然に還元され、最高レベルのセグメンテーション・トゥ・イメージ(S2I)となる。
本稿では,この新たなセットアップの課題に対処する,新しいテクニックをいくつか紹介する。
論文 参考訳(メタデータ) (2022-11-21T18:59:05Z) - Augraphy: A Data Augmentation Library for Document Images [59.457999432618614]
Augraphyはデータ拡張パイプラインを構築するためのPythonライブラリである。
標準的なオフィス操作によって変更されたように見えるクリーンなドキュメントイメージの拡張版を作成するための戦略を提供する。
論文 参考訳(メタデータ) (2022-08-30T22:36:19Z) - Object Detection Based Handwriting Localization [2.6641834518599308]
文書から手書き領域をローカライズするオブジェクト検出手法を提案する。
提案手法は手書き文字認識や署名検証などの他の作業を容易にすることも期待されている。
論文 参考訳(メタデータ) (2021-06-28T21:25:20Z) - Text Line Segmentation for Challenging Handwritten Document Images Using
Fully Convolutional Network [0.0]
本稿では,歴史的写本画像に対するテキストラインセグメンテーション手法を提案する。
同じテキストライン上のコンポーネントを接続するラインマスクに依存しています。
FCNは、通常の手書き文書画像のテキスト行のセグメンテーションに成功している。
論文 参考訳(メタデータ) (2021-01-20T19:51:26Z) - Joint Layout Analysis, Character Detection and Recognition for
Historical Document Digitization [33.02563283777661]
本稿では,正しい読解順序に従う歴史資料を復元するためのエンドツーエンドのトレーニング可能なフレームワークを提案する。
特徴抽出ネットワークの後方には、キャラクタブランチとレイアウトブランチという2つのブランチが追加されている。
中国の歴史文書MTHv2データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-14T08:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。