Multiplexed sensing of magnetic field and temperature in real time using
a nitrogen vacancy spin ensemble in diamond
- URL: http://arxiv.org/abs/2104.12211v2
- Date: Wed, 1 Dec 2021 16:00:00 GMT
- Title: Multiplexed sensing of magnetic field and temperature in real time using
a nitrogen vacancy spin ensemble in diamond
- Authors: Jeong Hyun Shim, Seong-Joo Lee, Santosh Ghimire, Ju Il Hwang, Kang
Geol Lee, Kiwoong Kim, Matthew J. Turner, Connor A. Hart, Ronald L.
Walsworth, Sangwon Oh
- Abstract summary: Nitrogen-Vacancy (NV) spin in diamond is a versatile quantum sensor.
We demonstrate a multiplexed sensing of magnetic field and temperature.
- Score: 1.015785232738621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nitrogen-Vacancy (NV) spin in diamond is a versatile quantum sensor, being
able to measure physical quantities such as magnetic field, electric field,
temperature, and pressure. In the present work, we demonstrate a multiplexed
sensing of magnetic field and temperature. The dual frequency driving technique
we employ here is based on frequency-division multiplexing, which enables
sensing both measurables in real time. The pair of NV resonance frequencies for
dual frequency driving must be selected to avoid coherent population trapping
of NV spin states. With an enhanced optical collection efficiency higher than
50 $\%$ and a type 1b diamond crystal with natural abundance $^{13}$C spins, we
achieve sensitivities of about 70 pT/$\sqrt{\mathrm{Hz}}$ and 25
$\mu$K/$\sqrt{\mathrm{Hz}}$ simultaneously. A high isolation factor of 34 dB in
NV thermometry signal against magnetic field was obtained, and we provide a
theoretical description for the isolation factor. This work paves the way for
extending the application of NV quantum diamond sensors into more demanding
conditions.
Related papers
- Coherent manipulation of nuclear spins in the strong driving regime [0.0]
We present an antenna for strong driving in quantum sensing experiments.
The antenna is tailored for quantum sensing experiments using the diamond's nitrogen-vacancy (NV) center.
We discuss the implications of driving spins with a field tilted from the transverse plane in a regime where the driving amplitude is comparable to the spin-state splitting.
arXiv Detail & Related papers (2023-10-31T17:31:27Z) - Optical coherence properties of Kramers' rare-earth ions at the
nanoscale for quantum applications [41.30071614056703]
Rare-earth (RE) ion doped nano-materials are promising candidates for a range of quantum technology applications.
Among RE ions, the so-called Kramers' ions possess spin transitions in the GHz range at low magnetic fields.
We measure spectroscopic properties that are of relevance to using these materials in quantum technology applications.
arXiv Detail & Related papers (2023-03-03T16:23:29Z) - Variable bandwidth, high efficiency microwave resonator for control of
spin-qubits in nitrogen-vacancy centers [0.0]
Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum information.
We present a planar microwave resonator optimized for microwave-optical double resonance experiments.
arXiv Detail & Related papers (2023-01-10T11:26:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - A Solid-State Microwave Magnetometer with Picotesla-Level Sensitivity [6.651249440652801]
Quantum sensing of low-frequency magnetic fields using nitrogen-vacancy (NV) center ensembles has been demonstrated in multiple experiments with sensitivities as low as $sim$1 pT/$sqrttextHz$.
Here we adapt for microwave frequencies techniques that have enabled high-performance, low-frequency quantum sensors.
We demonstrate a Rabi-sequence-based magnetometer able to detect microwave fields near 2.87 GHz with a record sensitivity of 3.4 pT/$sqrttextrmHz$.
arXiv Detail & Related papers (2022-06-30T17:33:02Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - High-Field Magnetometry with Hyperpolarized Nuclear Spins [0.0]
We propose and demonstrate a high-field spin magnetometer constructed from an ensemble of hyperpolarized $13C$ nuclear spins in diamond.
For quantum sensing at 7T and a single crystal sample, we demonstrate spectral resolution better than 100 mHz.
This work points to interesting opportunities for microscale NMR chemical sensors constructed from hyperpolarized nanodiamonds.
arXiv Detail & Related papers (2021-12-22T01:33:07Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.