Where Are the Facts? Searching for Fact-checked Information to Alleviate
the Spread of Fake News
- URL: http://arxiv.org/abs/2010.03159v1
- Date: Wed, 7 Oct 2020 04:55:34 GMT
- Title: Where Are the Facts? Searching for Fact-checked Information to Alleviate
the Spread of Fake News
- Authors: Nguyen Vo, Kyumin Lee
- Abstract summary: We propose a novel framework to search for fact-checking articles, which address the content of an original tweet (that may contain misinformation) posted by online users.
The search can directly warn fake news posters and online users about misinformation, discourage them from spreading fake news, and scale up verified content on social media.
Our framework uses both text and images to search for fact-checking articles, and achieves promising results on real-world datasets.
- Score: 9.68145635795782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although many fact-checking systems have been developed in academia and
industry, fake news is still proliferating on social media. These systems
mostly focus on fact-checking but usually neglect online users who are the main
drivers of the spread of misinformation. How can we use fact-checked
information to improve users' consciousness of fake news to which they are
exposed? How can we stop users from spreading fake news? To tackle these
questions, we propose a novel framework to search for fact-checking articles,
which address the content of an original tweet (that may contain
misinformation) posted by online users. The search can directly warn fake news
posters and online users (e.g. the posters' followers) about misinformation,
discourage them from spreading fake news, and scale up verified content on
social media. Our framework uses both text and images to search for
fact-checking articles, and achieves promising results on real-world datasets.
Our code and datasets are released at https://github.com/nguyenvo09/EMNLP2020.
Related papers
- FALSE: Fake News Automatic and Lightweight Solution [0.20999222360659603]
In this paper, R code have been used to study and visualize a modern fake news dataset.
We use clustering, classification, correlation and various plots to analyze and present the data.
arXiv Detail & Related papers (2022-08-16T11:53:30Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Fake News Detection Tools and Methods -- A Review [0.0]
We discuss the recent literature about different approaches to detect fake news over the Internet.
We highlight the various publicly available datasets and various online tools that are available and can debunk Fake News in real-time.
arXiv Detail & Related papers (2021-11-21T13:19:23Z) - Is it Fake? News Disinformation Detection on South African News Websites [0.015863809575305417]
Natural Language Processing is widely used in detecting fake news.
It is especially a problem in more localised contexts such as in South Africa.
In this work we investigate fake news detection on South African websites.
arXiv Detail & Related papers (2021-08-06T04:54:03Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
We propose a model for detecting fake news using stance as one of the features along with the content of the article.
Our work interprets the content with automatic feature extraction and the relevance of the text pieces.
The experiment conducted on the real-world dataset indicates that our model outperforms the previous work and enables fake news detection with an accuracy of 95.32%.
arXiv Detail & Related papers (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Misinfo Belief Frames: A Case Study on Covid & Climate News [49.979419711713795]
We propose a formalism for understanding how readers perceive the reliability of news and the impact of misinformation.
We introduce the Misinfo Belief Frames (MBF) corpus, a dataset of 66k inferences over 23.5k headlines.
Our results using large-scale language modeling to predict misinformation frames show that machine-generated inferences can influence readers' trust in news headlines.
arXiv Detail & Related papers (2021-04-18T09:50:11Z) - The Rise and Fall of Fake News sites: A Traffic Analysis [62.51737815926007]
We investigate the online presence of fake news websites and characterize their behavior in comparison to real news websites.
Based on our findings, we build a content-agnostic ML for automatic detection of fake news websites.
arXiv Detail & Related papers (2021-03-16T18:10:22Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
We present the Fake News Evolution dataset: a new dataset tracking the fake news evolution process.
Our dataset is composed of 950 paired data, each of which consists of articles representing the truth, the fake news, and the evolved fake news.
We observe the features during the evolution and they are the disinformation techniques, text similarity, top 10 keywords, classification accuracy, parts of speech, and sentiment properties.
arXiv Detail & Related papers (2021-03-10T09:01:34Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.