Efficient training of physics-informed neural networks via importance
sampling
- URL: http://arxiv.org/abs/2104.12325v1
- Date: Mon, 26 Apr 2021 02:45:10 GMT
- Title: Efficient training of physics-informed neural networks via importance
sampling
- Authors: Mohammad Amin Nabian, Rini Jasmine Gladstone, Hadi Meidani
- Abstract summary: Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
- Score: 2.9005223064604078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) are a class of deep neural networks
that are trained, using automatic differentiation, to compute the response of
systems governed by partial differential equations (PDEs). The training of
PINNs is simulation-free, and does not require any training dataset to be
obtained from numerical PDE solvers. Instead, it only requires the physical
problem description, including the governing laws of physics, domain geometry,
initial/boundary conditions, and the material properties. This training usually
involves solving a non-convex optimization problem using variants of the
stochastic gradient descent method, with the gradient of the loss function
approximated on a batch of collocation points, selected randomly in each
iteration according to a uniform distribution. Despite the success of PINNs in
accurately solving a wide variety of PDEs, the method still requires
improvements in terms of computational efficiency. To this end, in this paper,
we study the performance of an importance sampling approach for efficient
training of PINNs. Using numerical examples together with theoretical
evidences, we show that in each training iteration, sampling the collocation
points according to a distribution proportional to the loss function will
improve the convergence behavior of the PINNs training. Additionally, we show
that providing a piecewise constant approximation to the loss function for
faster importance sampling can further improve the training efficiency. This
importance sampling approach is straightforward and easy to implement in the
existing PINN codes, and also does not introduce any new hyperparameter to
calibrate. The numerical examples include elasticity, diffusion and plane
stress problems, through which we numerically verify the accuracy and
efficiency of the importance sampling approach compared to the predominant
uniform sampling approach.
Related papers
- DiffGrad for Physics-Informed Neural Networks [0.0]
Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adamprop.
This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs.
arXiv Detail & Related papers (2024-09-05T04:39:35Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - A Novel Adaptive Causal Sampling Method for Physics-Informed Neural
Networks [35.25394937917774]
Informed Neural Networks (PINNs) have become a kind of attractive machine learning method for obtaining solutions of partial differential equations (PDEs)
We introduce temporal causality into adaptive sampling and propose a novel adaptive causal sampling method to improve the performance and efficiency of PINs.
We demonstrate that by utilizing such a relatively simple sampling method, prediction performance can be improved up to two orders of magnitude compared with state-of-the-art results.
arXiv Detail & Related papers (2022-10-24T01:51:08Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
The finite precision level is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format.
The proposed FL framework can reduce energy consumption until convergence by up to 70% compared to a baseline FL algorithm.
arXiv Detail & Related papers (2022-07-19T16:37:24Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.