RL-PINNs: Reinforcement Learning-Driven Adaptive Sampling for Efficient Training of PINNs
- URL: http://arxiv.org/abs/2504.12949v1
- Date: Thu, 17 Apr 2025 13:50:55 GMT
- Title: RL-PINNs: Reinforcement Learning-Driven Adaptive Sampling for Efficient Training of PINNs
- Authors: Zhenao Song,
- Abstract summary: Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs)<n>Their performance heavily relies on the strategy used to select training points.<n>We propose RL-PINNs, a reinforcement learning-driven adaptive sampling framework that enables efficient training with only a single round of sampling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs). However, their performance heavily relies on the strategy used to select training points. Conventional adaptive sampling methods, such as residual-based refinement, often require multi-round sampling and repeated retraining of PINNs, leading to computational inefficiency due to redundant points and costly gradient computations-particularly in high-dimensional or high-order derivative scenarios. To address these limitations, we propose RL-PINNs, a reinforcement learning(RL)-driven adaptive sampling framework that enables efficient training with only a single round of sampling. Our approach formulates adaptive sampling as a Markov decision process, where an RL agent dynamically selects optimal training points by maximizing a long-term utility metric. Critically, we replace gradient-dependent residual metrics with a computationally efficient function variation as the reward signal, eliminating the overhead of derivative calculations. Furthermore, we employ a delayed reward mechanism to prioritize long-term training stability over short-term gains. Extensive experiments across diverse PDE benchmarks, including low-regular, nonlinear, high-dimensional, and high-order problems, demonstrate that RL-PINNs significantly outperforms existing residual-driven adaptive methods in accuracy. Notably, RL-PINNs achieve this with negligible sampling overhead, making them scalable to high-dimensional and high-order problems.
Related papers
- An Imbalanced Learning-based Sampling Method for Physics-informed Neural Networks [4.609724496676172]
RSmote is an innovative local adaptive sampling technique tailored to improve the performance of Physics-Informed Neural Networks (PINNs)<n>Traditional residual-based adaptive sampling methods, while effective in enhancing PINN accuracy, often struggle with efficiency and high memory consumption.
arXiv Detail & Related papers (2025-01-20T02:16:03Z) - An Adaptive Collocation Point Strategy For Physics Informed Neural Networks via the QR Discrete Empirical Interpolation Method [1.2289361708127877]
We propose an adaptive collocation point selection strategy utilizing the QR Discrete Empirical Interpolation Method (QR-DEIM)<n>Our results on benchmark PDEs, including the wave, Allen-Cahn, and Burgers' equations, demonstrate that our QR-DEIM-based approach improves PINN accuracy compared to existing methods.
arXiv Detail & Related papers (2025-01-13T21:24:15Z) - Reinforcement learning for anisotropic p-adaptation and error estimation in high-order solvers [0.37109226820205005]
We present a novel approach to automate and optimize anisotropic p-adaptation in high-order h/p using Reinforcement Learning (RL)
We develop an offline training approach, decoupled from the main solver, which shows minimal overcost when performing simulations.
We derive an inexpensive RL-based error estimation approach that enables the quantification of local discretization errors.
arXiv Detail & Related papers (2024-07-26T17:55:23Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications.<n>This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS- DDR) to efficiently train parametric actor policies.<n>It is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A Novel Adaptive Causal Sampling Method for Physics-Informed Neural
Networks [35.25394937917774]
Informed Neural Networks (PINNs) have become a kind of attractive machine learning method for obtaining solutions of partial differential equations (PDEs)
We introduce temporal causality into adaptive sampling and propose a novel adaptive causal sampling method to improve the performance and efficiency of PINs.
We demonstrate that by utilizing such a relatively simple sampling method, prediction performance can be improved up to two orders of magnitude compared with state-of-the-art results.
arXiv Detail & Related papers (2022-10-24T01:51:08Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
We propose a novel regularization scheme for linear decision rules (LDR) based on the AdaSO (adaptive least absolute shrinkage and selection operator)
Experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP.
For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark.
arXiv Detail & Related papers (2021-10-07T02:36:14Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.