Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network
- URL: http://arxiv.org/abs/2104.12518v2
- Date: Wed, 28 Apr 2021 07:44:19 GMT
- Title: Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network
- Authors: Amit Roy, Kashob Kumar Roy, Amin Ahsan Ali, M Ashraful Amin and A K M
Mahbubur Rahman
- Abstract summary: We argue that temporal is less effective to extract the complex-temporal relationship with such factorized modules.
We propose a Unified S-weekly Graph Convolution (USTGCN) for traffic forecasting that performs both spatial and temporal aggregation.
Our model USTGCN can outperform state-of-the-art performances in three popular benchmark datasets.
- Score: 2.7088996845250897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in deep learning models to forecast traffic intensities has gained
great attention in recent years due to their capability to capture the complex
spatio-temporal relationships within the traffic data. However, most
state-of-the-art approaches have designed spatial-only (e.g. Graph Neural
Networks) and temporal-only (e.g. Recurrent Neural Networks) modules to
separately extract spatial and temporal features. However, we argue that it is
less effective to extract the complex spatio-temporal relationship with such
factorized modules. Besides, most existing works predict the traffic intensity
of a particular time interval only based on the traffic data of the previous
one hour of that day. And thereby ignores the repetitive daily/weekly pattern
that may exist in the last hour of data. Therefore, we propose a Unified
Spatio-Temporal Graph Convolution Network (USTGCN) for traffic forecasting that
performs both spatial and temporal aggregation through direct information
propagation across different timestamp nodes with the help of spectral graph
convolution on a spatio-temporal graph. Furthermore, it captures historical
daily patterns in previous days and current-day patterns in current-day traffic
data. Finally, we validate our work's effectiveness through experimental
analysis, which shows that our model USTGCN can outperform state-of-the-art
performances in three popular benchmark datasets from the Performance
Measurement System (PeMS). Moreover, the training time is reduced significantly
with our proposed USTGCN model.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Residual Graph Convolutional Recurrent Networks For Multi-step Traffic
Flow Forecasting [12.223433627287605]
We propose a new Spatial-temporal forecasting model, namely the Residual Graph Convolutional Recurrent Network (RGCRN)
The model uses our proposed Residual Graph Convolutional Network (ResGCN) to capture the fine-grained spatial correlation of the traffic road network.
Our comparative experimental results on two real datasets show that RGCRN improves on average by 20.66% compared to the best baseline model.
arXiv Detail & Related papers (2022-05-03T13:23:38Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
Spatial-temporal forecasting has attracted tremendous attention in a wide range of applications, and traffic flow prediction is a canonical and typical example.
Existing works typically utilize shallow graph convolution networks (GNNs) and temporal extracting modules to model spatial and temporal dependencies respectively.
We propose Spatial-Temporal Graph Ordinary Differential Equation Networks (STGODE), which captures spatial-temporal dynamics through a tensor-based ordinary differential equation (ODE)
We evaluate our model on multiple real-world traffic datasets and superior performance is achieved over state-of-the-art baselines.
arXiv Detail & Related papers (2021-06-24T11:48:45Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.