Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs
- URL: http://arxiv.org/abs/2104.13414v1
- Date: Tue, 27 Apr 2021 18:17:42 GMT
- Title: Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs
- Authors: Semin Kwak, Nikolas Geroliminis, Pascal Frossard
- Abstract summary: This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
- Score: 56.48498624951417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting multivariate time series is challenging as the variables are
intertwined in time and space, like in the case of traffic signals. Defining
signals on graphs relaxes such complexities by representing the evolution of
signals over a space using relevant graph kernels such as the heat diffusion
kernel. However, this kernel alone does not fully capture the actual dynamics
of the data as it only relies on the graph structure. The gap can be filled by
combining the graph kernel representation with data-driven models that utilize
historical data. This paper proposes a traffic propagation model that merges
multiple heat diffusion kernels into a data-driven prediction model to forecast
traffic signals. We optimize the model parameters using Bayesian inference to
minimize the prediction errors and, consequently, determine the mixing ratio of
the two approaches. Such mixing ratio strongly depends on training data size
and data anomalies, which typically correspond to the peak hours for traffic
data. The proposed model demonstrates prediction accuracy comparable to that of
the state-of-the-art deep neural networks with lower computational effort. It
particularly shows excellent performance for long-term prediction since it
inherits the data-driven models' periodicity modeling.
Related papers
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4I model is designed to handle both irregular time steps and partial observations of the graph.
Time-continuous dynamics enables the model to make predictions at arbitrary time steps.
Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics.
arXiv Detail & Related papers (2023-02-16T16:47:55Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
We propose a factorized Spatial-Temporal Graph Convolutional Network to deal with traffic speed prediction.
To reduce the computational burden, we take Tucker tensor decomposition and derive factorized a tensor convolution.
Experiments on two real-world traffic speed datasets demonstrate our method is more effective than those traditional traffic prediction methods.
arXiv Detail & Related papers (2021-03-10T15:28:07Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data.
The proposed methods are verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE.
arXiv Detail & Related papers (2020-06-22T14:26:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.