論文の概要: Agile (data) science: a (draft) manifesto
- arxiv url: http://arxiv.org/abs/2104.12545v3
- Date: Mon, 4 Jul 2022 12:00:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 07:25:49.433300
- Title: Agile (data) science: a (draft) manifesto
- Title(参考訳): アジャイル(データ)科学:(ドラフト)マニフェスト
- Authors: Juan Juli\'an Merelo-Guerv\'os, Mario Garc\'ia-Valdez
- Abstract要約: 産業レベルのデータサイエンスチームはアジャイルマインドセットを受け入れてきたが、学術ベースの科学は依然として、単一の最終製品(論文)に焦点を当てたマインドセットに偏っている。
このレポートでは、学界におけるアジャイルマインドセットとアジャイルデータサイエンスツールの採用を議論し、より責任を負い、何よりも再現可能な科学を創出します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Science has a data management problem, as well as a project management
problem. While industrial-grade data science teams have embraced the agile
mindset, and adopted or created all kind of tools to create reproducible
workflows, academia-based science is still (mostly) mired in a mindset that is
focused on a single final product (a paper), without focusing on incremental
improvement, on any specific problem or customer, or, paying any attention
reproducibility. In this report we argue towards the adoption of the agile
mindset and agile data science tools in academia, to make a more responsible,
and over all, reproducible science.
- Abstract(参考訳): 科学にはデータ管理の問題とプロジェクト管理の問題があります。
産業レベルのデータサイエンスチームは、アジャイルマインドセットを採用し、再現可能なワークフローを作るためのあらゆる種類のツールを採用または作成したが、学術ベースの科学は、(主に)単一の最終製品(紙)に焦点を絞ったマインドセットで、漸進的な改善、特定の問題や顧客、注意を払って、再現性に重点を置いている。
このレポートでは、学界におけるアジャイルマインドセットとアジャイルデータサイエンスツールの採用を議論し、より責任を負い、何よりも再現可能な科学を創出します。
関連論文リスト
- Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
我々は、それらを接続する物理法則が存在する分子的タスクの専門性を生かし、整合性トレーニングアプローチを設計する。
より正確なエネルギーデータにより、構造予測の精度が向上することを示した。
また、整合性トレーニングは、構造予測を改善するために、力と非平衡構造データを直接活用できることがわかった。
論文 参考訳(メタデータ) (2024-10-14T03:11:33Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
本研究では,新しい科学的発見の完全なサイクルを実行するエージェントの能力を開発し,ベンチマークする最初の仮想環境であるDiscoVERYWORLDを紹介する。
8つのトピックにまたがる120の異なる課題タスクが含まれており、3レベルの難易度といくつかのパラメトリックなバリエーションがある。
従来の環境においてよく機能する強力なベースラインエージェントが、ほとんどのdiscoVERYWORLDタスクに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-06-10T20:08:44Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
我々は,Multi-Aspect Summarization of ScientificAspectsに関する総合テキストデータセットであるMASSWを紹介する。
MASSWには過去50年間にわたる17の主要なコンピュータサイエンスカンファレンスから152,000以上の査読論文が含まれている。
我々は、この新しいデータセットを用いてベンチマーク可能な、複数の新しい機械学習タスクを通じて、MASSWの有用性を実証する。
論文 参考訳(メタデータ) (2024-06-10T15:19:09Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - CLAIMED -- the open source framework for building coarse-grained
operators for accelerated discovery in science [0.0]
CLAIMEDは、科学者が科学演算子を再コンパイルすることによって以前の研究から引き出すのを支援することで、再利用可能な演算子とスケーラブルな科学的不可知性を構築するためのフレームワークである。
CLAIMEDはプログラミング言語、科学ライブラリ、実行環境である。
論文 参考訳(メタデータ) (2023-07-12T11:54:39Z) - Position Paper on Dataset Engineering to Accelerate Science [1.952708415083428]
この作業では、トークン ittextdataset を使用して、明確に定義されたタスクを実行するために構築されたデータの構造化セットを指定する。
具体的には、科学において、各領域にはデータセットを整理、収集、処理するためのユニークな形態がある。
科学と工学の発見プロセスは、データセット上のそのような組織の必要性の極端な例である、と我々は主張する。
論文 参考訳(メタデータ) (2023-03-09T19:07:40Z) - TAPS Responsibility Matrix: A tool for responsible data science by
design [2.2973034509761816]
データサイエンスプロジェクトの社会的、法的、倫理的側面を探求する枠組みとして、透明性、説明責任、プライバシー、社会責任マトリックス(TAPS-RM)について述べる。
TAPS-RMの開発モデルと、オープンデータのためのよく知られたイニシアチブをマッピングする。
TAPS-RMはデータサイエンスプロジェクトレベルでの責任を反映するツールであり、設計による責任あるデータサイエンスの推進に利用することができると結論付けている。
論文 参考訳(メタデータ) (2023-02-02T12:09:14Z) - Opinionated practices for teaching reproducibility: motivation, guided
instruction and practice [0.0]
予測モデリングは、しばしばデータサイエンスの初心者にとって最も興味深いトピックの1つである。
学生は本質的にこのトピックを学ぶ動機がなく、学ぶのは容易ではない。
余分なモチベーション、指導、多くのプラクティスを提供することが、このトピックを効果的に教える鍵となります。
論文 参考訳(メタデータ) (2021-09-17T19:15:41Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
我々は、動的プログラミングによって新しいスキルを拡張するために、事前データを再利用できることを示します。
我々は、新しいタスクを解決するために、以前のデータセットに見られるいくつかの動作をチェーンすることで、アプローチの有効性を実証する。
我々は、高次元画像観察を低レベルのロボット制御コマンドにマッピングし、エンドツーエンドでポリシーを訓練する。
論文 参考訳(メタデータ) (2020-10-27T17:57:29Z) - A user-centered approach to designing an experimental laboratory data
platform [0.0]
実験的なデータプラットフォームにおいて、設計と機能の本質的な要素が何を求めているのかを理解するために、ユーザ中心のアプローチを採用しています。
リッチで複雑な実験データセットをコンテキスト化できる能力を持つことが、ユーザの主な要件であることに気付きました。
論文 参考訳(メタデータ) (2020-07-28T19:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。