DABT: A Dependency-aware Bug Triaging Method
- URL: http://arxiv.org/abs/2104.12744v1
- Date: Mon, 26 Apr 2021 17:35:42 GMT
- Title: DABT: A Dependency-aware Bug Triaging Method
- Authors: Hadi Jahanshahi, Kritika Chhabra, Mucahit Cevik, Ay\c{s}e Ba\c{s}ar
- Abstract summary: We introduce a bug triaging method, called Dependency-aware Bug Triaging (DABT), which leverages natural language processing and integer to assign bugs to appropriate developers.
Our result shows that DABT is able to reduce the number overdue bugs up to 12%.
It also decreases the average fixing time of the bugs by half.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In software engineering practice, fixing a bug promptly reduces the
associated costs. On the other hand, the manual bug fixing process can be
time-consuming, cumbersome, and error-prone. In this work, we introduce a bug
triaging method, called Dependency-aware Bug Triaging (DABT), which leverages
natural language processing and integer programming to assign bugs to
appropriate developers. Unlike previous works that mainly focus on one aspect
of the bug reports, DABT considers the textual information, cost associated
with each bug, and dependency among them. Therefore, this comprehensive
formulation covers the most important aspect of the previous works while
considering the blocking effect of the bugs. We report the performance of the
algorithm on three open-source software systems, i.e., EclipseJDT, LibreOffice,
and Mozilla. Our result shows that DABT is able to reduce the number of overdue
bugs up to 12\%. It also decreases the average fixing time of the bugs by half.
Moreover, it reduces the complexity of the bug dependency graph by prioritizing
blocking bugs.
Related papers
- Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests [44.13331329339185]
We introduce a new approach, SBEST, that integrates stack trace data with test coverage to enhance fault localization.
Our approach shows a significant improvement, increasing Mean Average Precision (MAP) by 32.22% and Mean Reciprocal Rank (MRR) by 17.43% over traditional stack trace ranking methods.
arXiv Detail & Related papers (2024-05-01T15:15:52Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - PreciseBugCollector: Extensible, Executable and Precise Bug-fix
Collection [8.79879909193717]
We introduce PreciseBugCollector, a precise, multi-language bug collection approach.
It is based on two novel components: a bug tracker to map the repositories with external bug repositories to trace bug type information, and a bug injector to generate project-specific bugs.
To date, PreciseBugCollector comprises 1057818 bugs extracted from 2968 open-source projects.
arXiv Detail & Related papers (2023-09-12T13:47:44Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
We propose a novel Retrieval-Augmented Patch Generation framework (RAP-Gen)
RAP-Gen explicitly leveraging relevant fix patterns retrieved from a list of previous bug-fix pairs.
We evaluate RAP-Gen on three benchmarks in two programming languages, including the TFix benchmark in JavaScript, and Code Refinement and Defects4J benchmarks in Java.
arXiv Detail & Related papers (2023-09-12T08:52:56Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - ADPTriage: Approximate Dynamic Programming for Bug Triage [0.0]
We develop a Markov decision process (MDP) model for an online bug triage task.
We provide an ADP-based bug triage solution, called ADPTriage, which reflects downstream uncertainty in the bug arrivals and developers' timetables.
Our result shows a significant improvement over the myopic approach in terms of assignment accuracy and fixing time.
arXiv Detail & Related papers (2022-11-02T04:42:21Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - S-DABT: Schedule and Dependency-Aware Bug Triage in Open-Source Bug
Tracking Systems [0.0]
Manual bug fixing scheduling can be time-consuming, cumbersome, and error-prone.
We propose the Schedule and Dependency-aware Bug Triage (S-DABT) to assign bugs to suitable developers.
arXiv Detail & Related papers (2022-04-12T17:36:43Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
We propose new deep learning models to solve the bug triage problem.
The models are based on a bidirectional recurrent neural network with attention and on a convolutional neural network.
To improve the quality of ranking, we propose using additional information from version control system annotations.
arXiv Detail & Related papers (2022-01-14T00:16:57Z) - Advaita: Bug Duplicity Detection System [1.9624064951902522]
Duplicate bugs rate (% of duplicate bugs) are in the range from single digit (1 to 9%) to double digits (40%) based on the product maturity, size of the code and number of engineers working on the project.
Detecting duplicity deals with identifying whether any two bugs convey the same meaning.
This approach considers multiple sets of features viz. basic text statistical features, semantic features and contextual features.
arXiv Detail & Related papers (2020-01-24T04:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.