Using Developer Discussions to Guide Fixing Bugs in Software
- URL: http://arxiv.org/abs/2211.06335v1
- Date: Fri, 11 Nov 2022 16:37:33 GMT
- Title: Using Developer Discussions to Guide Fixing Bugs in Software
- Authors: Sheena Panthaplackel, Milos Gligoric, Junyi Jessy Li, Raymond J.
Mooney
- Abstract summary: We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
- Score: 51.00904399653609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatically fixing software bugs is a challenging task. While recent work
showed that natural language context is useful in guiding bug-fixing models,
the approach required prompting developers to provide this context, which was
simulated through commit messages written after the bug-fixing code changes
were made. We instead propose using bug report discussions, which are available
before the task is performed and are also naturally occurring, avoiding the
need for any additional information from developers. For this, we augment
standard bug-fixing datasets with bug report discussions. Using these newly
compiled datasets, we demonstrate that various forms of natural language
context derived from such discussions can aid bug-fixing, even leading to
improved performance over using commit messages corresponding to the oracle
bug-fixing commits.
Related papers
- Toward Rapid Bug Resolution for Android Apps [0.4759142872591625]
This paper describes the existing limitations of bug reports and identifies potential strategies for addressing them.
Our vision encompasses a future where the alleviation of these limitations and successful execution of our proposed new research directions can benefit both reporters and developers.
arXiv Detail & Related papers (2023-12-23T18:29:06Z) - From Commit Message Generation to History-Aware Commit Message
Completion [49.175498083165884]
We argue that if we could shift the focus from commit message generation to commit message completion, we could significantly improve the quality and the personal nature of the resulting commit messages.
Since the existing datasets lack historical data, we collect and share a novel dataset called CommitChronicle, containing 10.7M commits across 20 programming languages.
Our results show that in some contexts, commit message completion shows better results than generation, and that while in general GPT-3.5-turbo performs worse, it shows potential for long and detailed messages.
arXiv Detail & Related papers (2023-08-15T09:10:49Z) - Prompting Is All You Need: Automated Android Bug Replay with Large Language Models [28.69675481931385]
We propose AdbGPT, a new lightweight approach to automatically reproduce the bugs from bug reports through prompt engineering.
AdbGPT leverages few-shot learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning from LLMs.
Our evaluations demonstrate the effectiveness and efficiency of our AdbGPT to reproduce 81.3% of bug reports in 253.6 seconds.
arXiv Detail & Related papers (2023-06-03T03:03:52Z) - Python Code Generation by Asking Clarification Questions [57.63906360576212]
In this work, we introduce a novel and more realistic setup for this task.
We hypothesize that the under-specification of a natural language description can be resolved by asking clarification questions.
We collect and introduce a new dataset named CodeClarQA containing pairs of natural language descriptions and code with created synthetic clarification questions and answers.
arXiv Detail & Related papers (2022-12-19T22:08:36Z) - Explaining Software Bugs Leveraging Code Structures in Neural Machine
Translation [5.079750706023254]
Bugsplainer generates natural language explanations for software bugs by learning from a large corpus of bug-fix commits.
Our evaluation using three performance metrics shows that Bugsplainer can generate understandable and good explanations according to Google's standard.
We also conduct a developer study involving 20 participants where the explanations from Bugsplainer were found to be more accurate, more precise, more concise and more useful than the baselines.
arXiv Detail & Related papers (2022-12-08T22:19:45Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - S-DABT: Schedule and Dependency-Aware Bug Triage in Open-Source Bug
Tracking Systems [0.0]
Manual bug fixing scheduling can be time-consuming, cumbersome, and error-prone.
We propose the Schedule and Dependency-aware Bug Triage (S-DABT) to assign bugs to suitable developers.
arXiv Detail & Related papers (2022-04-12T17:36:43Z) - Learning to Describe Solutions for Bug Reports Based on Developer
Discussions [43.427873307255425]
We propose generating a concise natural language description of the solution by synthesizing relevant content within the discussion.
To support generating an informative description during an ongoing discussion, we propose a secondary task of determining when sufficient context about the solution emerges in real-time.
We construct a dataset for these tasks with a novel technique for obtaining noisy supervision from repository changes linked to bug reports.
arXiv Detail & Related papers (2021-10-08T19:39:55Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
We collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data.
Results confirm that the performance of all tested models is affected but the degree of impact varies.
arXiv Detail & Related papers (2020-05-12T11:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.