Multi-resource allocation for federated settings: A non-homogeneous
Markov chain model
- URL: http://arxiv.org/abs/2104.12828v1
- Date: Mon, 26 Apr 2021 19:10:00 GMT
- Title: Multi-resource allocation for federated settings: A non-homogeneous
Markov chain model
- Authors: Syed Eqbal Alam and Fabian Wirth and Jia Yuan Yu
- Abstract summary: In a federated setting, agents coordinate with a central agent or a server to solve an optimization problem in which agents do not share their information with each other.
We describe how the basic additive-increase multiplicative-decrease (AIMD) algorithm can be modified in a straightforward manner to solve a class of optimization problems for federated settings for a single shared resource with no inter-agent communication.
We extend the single-resource algorithm to multiple heterogeneous shared resources that emerge in smart cities, sharing economy, and many other applications.
- Score: 2.552459629685159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a federated setting, agents coordinate with a central agent or a server to
solve an optimization problem in which agents do not share their information
with each other. Wirth and his co-authors, in a recent paper, describe how the
basic additive-increase multiplicative-decrease (AIMD) algorithm can be
modified in a straightforward manner to solve a class of optimization problems
for federated settings for a single shared resource with no inter-agent
communication. The AIMD algorithm is one of the most successful distributed
resource allocation algorithms currently deployed in practice. It is best known
as the backbone of the Internet and is also widely explored in other
application areas. We extend the single-resource algorithm to multiple
heterogeneous shared resources that emerge in smart cities, sharing economy,
and many other applications. Our main results show the convergence of the
average allocations to the optimal values. We model the system as a
non-homogeneous Markov chain with place-dependent probabilities. Furthermore,
simulation results are presented to demonstrate the efficacy of the algorithms
and to highlight the main features of our analysis.
Related papers
- Multi-source domain adaptation for regression [2.8648412780872845]
Multi-source domain adaptation (DA) aims at leveraging information from more than one source domain to make predictions in a target domain.
We extend a flexible single-source DA algorithm for classification through outcome-coarsening to enable its application to regression problems.
We then augment our single-source DA algorithm for regression with ensemble learning to achieve multi-source DA.
arXiv Detail & Related papers (2023-12-09T04:09:37Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
Area Under Precision-Recall (AUPRC) was introduced as an effective metric.
Serverless multi-party collaborative training can cut down the communications cost by avoiding the server node bottleneck.
We propose a new ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to directly optimize the AUPRC.
arXiv Detail & Related papers (2023-08-06T06:51:32Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Resource-Aware Distributed Submodular Maximization: A Paradigm for
Multi-Robot Decision-Making [3.5788754401889022]
Resource-Aware distributed Greedy is the first algorithm to account for each robot's on-board resources independently.
RAG balances the trade-off of centralization, for global near-optimality, vs. decentralization, for near-minimal on-board computation, communication, and memory resources.
arXiv Detail & Related papers (2022-04-15T15:47:05Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Resource allocation in dynamic multiagent systems [0.0]
The MG-RAO algorithm is developed to solve resource allocation problems in multi-agent systems.
It shows a 23 - 28% improvement over fixed resource allocation in the simulated environments.
Results also show that, in a volatile system, using the MG-RAO algorithm configured so that child agents model resource allocation for all agents as a whole has 46.5% of the performance of when it is set to model multiple groups of agents.
arXiv Detail & Related papers (2021-02-16T17:56:23Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - A Multi-Agent Primal-Dual Strategy for Composite Optimization over
Distributed Features [52.856801164425086]
We study multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) coupling function.
arXiv Detail & Related papers (2020-06-15T19:40:24Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.