One Billion Audio Sounds from GPU-enabled Modular Synthesis
- URL: http://arxiv.org/abs/2104.12922v1
- Date: Tue, 27 Apr 2021 00:38:52 GMT
- Title: One Billion Audio Sounds from GPU-enabled Modular Synthesis
- Authors: Joseph Turian and Jordie Shier and George Tzanetakis and Kirk McNally
and Max Henry
- Abstract summary: synth1B1, a multi-modal audio corpus consisting of 1 billion 4-second synthesized sounds, is 100x larger than any audio dataset in the literature.
synth1B1 samples are deterministically generated on-the-fly 16200x faster than real-time (714MHz) on a single GPU.
- Score: 5.5022962399775945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We release synth1B1, a multi-modal audio corpus consisting of 1 billion
4-second synthesized sounds, which is 100x larger than any audio dataset in the
literature. Each sound is paired with the corresponding latent parameters used
to generate it. synth1B1 samples are deterministically generated on-the-fly
16200x faster than real-time (714MHz) on a single GPU using torchsynth
(https://github.com/torchsynth/torchsynth), an open-source modular synthesizer
we release. Additionally, we release two new audio datasets: FM synth timbre
(https://zenodo.org/record/4677102) and subtractive synth pitch
(https://zenodo.org/record/4677097). Using these datasets, we demonstrate new
rank-based synthesizer-motivated evaluation criteria for existing audio
representations. Finally, we propose novel approaches to synthesizer
hyperparameter optimization, and demonstrate how perceptually-correlated
auditory distances could enable new applications in synthesizer design.
Related papers
- Robust AI-Synthesized Speech Detection Using Feature Decomposition Learning and Synthesizer Feature Augmentation [52.0893266767733]
We propose a robust deepfake speech detection method that employs feature decomposition to learn synthesizer-independent content features.
To enhance the model's robustness to different synthesizer characteristics, we propose a synthesizer feature augmentation strategy.
arXiv Detail & Related papers (2024-11-14T03:57:21Z) - Synthesizer Sound Matching Using Audio Spectrogram Transformers [2.5944208050492183]
We introduce a synthesizer sound matching model based on the Audio Spectrogram Transformer.
We show that this model can reconstruct parameters of samples generated from a set of 16 parameters.
We also provide audio examples demonstrating the out-of-domain model performance in emulating vocal imitations.
arXiv Detail & Related papers (2024-07-23T16:58:14Z) - DiffMoog: a Differentiable Modular Synthesizer for Sound Matching [48.33168531500444]
DiffMoog is a differentiable modular synthesizer with a comprehensive set of modules typically found in commercial instruments.
Being differentiable, it allows integration into neural networks, enabling automated sound matching.
We introduce an open-source platform that comprises DiffMoog and an end-to-end sound matching framework.
arXiv Detail & Related papers (2024-01-23T08:59:21Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
Video-to-speech synthesis is the task of reconstructing the speech signal from a silent video of a speaker.
In this paper we propose to train encoder-decoder models on more than 3,500 hours of audio data at 24kHz.
We then use the pre-trained decoders to initialize the audio decoders for the video-to-speech synthesis task.
arXiv Detail & Related papers (2023-06-27T13:31:33Z) - NAS-FM: Neural Architecture Search for Tunable and Interpretable Sound
Synthesis based on Frequency Modulation [38.00669627261736]
We propose NAS-FM'', which adopts neural architecture search (NAS) to build a differentiable frequency modulation (FM) synthesizer.
Tunable synthesizers with interpretable controls can be developed automatically from sounds without any prior expert knowledge.
arXiv Detail & Related papers (2023-05-22T09:46:10Z) - Novel-View Acoustic Synthesis [140.1107768313269]
We introduce the novel-view acoustic synthesis (NVAS) task.
given the sight and sound observed at a source viewpoint, can we synthesize the sound of that scene from an unseen target viewpoint?
We propose a neural rendering approach: Visually-Guided Acoustic Synthesis (ViGAS) network that learns to synthesize the sound of an arbitrary point in space.
arXiv Detail & Related papers (2023-01-20T18:49:58Z) - Synthesizer Preset Interpolation using Transformer Auto-Encoders [4.213427823201119]
We introduce a bimodal auto-encoder neural network, which simultaneously processes presets using multi-head attention blocks, and audio using convolutions.
This model has been tested on a popular frequency modulation synthesizer with more than one hundred parameters.
After training, the proposed model can be integrated into commercial synthesizers for live or sound design tasks.
arXiv Detail & Related papers (2022-10-27T15:20:18Z) - DDX7: Differentiable FM Synthesis of Musical Instrument Sounds [7.829520196474829]
Differentiable Digital Signal Processing (DDSP) has enabled nuanced audio rendering by Deep Neural Networks (DNNs)
We present Differentiable DX7 (DDX7), a lightweight architecture for neural FM resynthesis of musical instrument sounds.
arXiv Detail & Related papers (2022-08-12T08:39:45Z) - Sound2Synth: Interpreting Sound via FM Synthesizer Parameters Estimation [19.13182347908491]
The problem of estimating a set of parameters configuration that best restore a sound timbre is an important yet complicated problem.
We proposed a multi-modal deep-learning-based pipeline Sound2 Synth, together with a network structure Prime-Dilated Convolution (PDC) specially designed to solve this problem.
Our method achieved not only SOTA but also the first real-world applicable results on Dexed synthesizer, a popular FM synthesizer.
arXiv Detail & Related papers (2022-05-06T06:55:29Z) - Synthesizer: Rethinking Self-Attention in Transformer Models [93.08171885200922]
dot product self-attention is central and indispensable to state-of-the-art Transformer models.
This paper investigates the true importance and contribution of the dot product-based self-attention mechanism on the performance of Transformer models.
arXiv Detail & Related papers (2020-05-02T08:16:19Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.