A Review of the Non-Invasive Techniques for Monitoring Different Aspects of Sleep
- URL: http://arxiv.org/abs/2104.12964v2
- Date: Thu, 17 Oct 2024 23:58:05 GMT
- Title: A Review of the Non-Invasive Techniques for Monitoring Different Aspects of Sleep
- Authors: Zawar Hussain, Quan Z. Sheng, Wei Emma Zhang, Jorge Ortiz, Seyedamin Pouriyeh,
- Abstract summary: Studies are being conducted for sleep monitoring and have now become an important tool for understanding sleep behavior.
The gold standard method for sleep analysis is polysomnography (PSG) conducted in a clinical environment but this method is both expensive and complex for long-term use.
Various solutions have been proposed using both wearable and non-wearable methods which are cheap and easy to use for in-home sleep monitoring.
- Score: 19.49661647406365
- License:
- Abstract: Quality sleep is very important for a healthy life. Nowadays, many people around the world are not getting enough sleep which is having negative impacts on their lifestyles. Studies are being conducted for sleep monitoring and have now become an important tool for understanding sleep behavior. The gold standard method for sleep analysis is polysomnography (PSG) conducted in a clinical environment but this method is both expensive and complex for long-term use. With the advancements in the field of sensors and the introduction of off-the-shelf technologies, unobtrusive solutions are becoming common as alternatives for in-home sleep monitoring. Various solutions have been proposed using both wearable and non-wearable methods which are cheap and easy to use for in-home sleep monitoring. In this paper, we present a comprehensive survey of the latest research works (2015 and after) conducted in various categories of sleep monitoring including sleep stage classification, sleep posture recognition, sleep disorders detection, and vital signs monitoring. We review the latest works done using the non-invasive approach and cover both wearable and non-wearable methods. We discuss the design approaches and key attributes of the work presented and provide an extensive analysis based on 10 key factors, to give a comprehensive overview of the recent developments and trends in all four categories of sleep monitoring. We also present some publicly available datasets for different categories of sleep monitoring. In the end, we discuss several open issues and provide future research directions in the area of sleep monitoring.
Related papers
- Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - SleepMore: Sleep Prediction at Scale via Multi-Device WiFi Sensing [0.0]
We propose SleepMore, an accurate and easy-to-deploy sleep-tracking approach based on machine learning over the user's WiFi network activity.
We validate SleepMore using data from a month-long user study involving 46 college students and draw comparisons with the Oura Ring wearable.
Our results demonstrate that SleepMore produces statistically indistinguishable sleep statistics from the Oura ring baseline for predictions made within a 5% uncertainty rate.
arXiv Detail & Related papers (2022-10-24T16:42:56Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Ubi-SleepNet: Advanced Multimodal Fusion Techniques for Three-stage
Sleep Classification Using Ubiquitous Sensing [9.489361939530383]
The gold standard for clinical sleep monitoring is polysomnography(PSG)
PSG is expensive, burdensome, and not suitable for daily use.
For long-term sleep monitoring, ubiquitous sensing may be a solution.
arXiv Detail & Related papers (2021-11-19T14:26:53Z) - In-Bed Person Monitoring Using Thermal Infrared Sensors [53.561797148529664]
We use 'Griddy', a prototype with a Panasonic Grid-EYE, a low-resolution infrared thermopile array sensor, which offers more privacy.
For this purpose, two datasets were captured, one (480 images) under constant conditions, and a second one (200 images) under different variations.
We test three machine learning algorithms: Support Vector Machines (SVM), k-Nearest Neighbors (k-NN) and Neural Network (NN)
arXiv Detail & Related papers (2021-07-16T15:59:07Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Classification Of Sleep-Wake State In A Ballistocardiogram System Based
On Deep Learning [1.4680035572775534]
We propose a Multi-Head 1D-Convolution based Deep Neural Network to classify sleep-wake state and predict sleep-wake time accurately.
Our method achieves a sleep-wake classification score of 95.5%, which is on par with researches based on the PSG system.
arXiv Detail & Related papers (2020-11-11T03:38:33Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - N=1 Modelling of Lifestyle Impact on SleepPerformance [2.9073923339818006]
Sleep is critical to leading a healthy lifestyle.
Despite current research, creating personalized sleep models in real-world settings has been challenging.
This research proposes a sleep model that can identify causal relationships between daily activities and sleep quality.
arXiv Detail & Related papers (2020-06-18T22:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.