論文の概要: Adaptive Adversarial Training for Meta Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2104.13302v1
- Date: Tue, 27 Apr 2021 16:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 13:37:22.596167
- Title: Adaptive Adversarial Training for Meta Reinforcement Learning
- Title(参考訳): メタ強化学習のための適応的対人訓練
- Authors: Shiqi Chen, Zhengyu Chen, Donglin Wang
- Abstract要約: モデルに依存しないメタラーニング(MAML)を基盤として,GAN (Generative Adversarial Network) を用いたMRLの逆サンプル生成手法を提案する。
これにより,メタトレーニングプロセスにおいて,これらの攻撃を活用することで,MRLの攻撃に対する堅牢性を高めることができる。
- 参考スコア(独自算出の注目度): 6.576665763018747
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Meta Reinforcement Learning (MRL) enables an agent to learn from a limited
number of past trajectories and extrapolate to a new task. In this paper, we
attempt to improve the robustness of MRL. We build upon model-agnostic
meta-learning (MAML) and propose a novel method to generate adversarial samples
for MRL by using Generative Adversarial Network (GAN). That allows us to
enhance the robustness of MRL to adversal attacks by leveraging these attacks
during meta training process.
- Abstract(参考訳): メタ強化学習(mrl)により、エージェントは限られた数の過去の軌跡から学び、新しいタスクに外挿することができる。
本稿ではMRLのロバスト性を改善することを試みる。
本稿では,モデルに依存しないメタラーニング(MAML)を構築し,GAN(Generative Adversarial Network)を用いてMRLの逆サンプルを生成する新しい手法を提案する。
これにより,メタトレーニングプロセスにおいて,これらの攻撃を活用することで,MRLの攻撃に対する堅牢性を高めることができる。
関連論文リスト
- MAMBA: an Effective World Model Approach for Meta-Reinforcement Learning [18.82398325614491]
本稿では,メタRL法とメタRL法の要素に基づくメタRLの新しいモデルベースアプローチを提案する。
本稿では,メタRLベンチマークドメインに対するアプローチの有効性を実証し,より優れたサンプル効率でより高いリターンが得られることを示す。
さらに,より困難な高次元領域のスレート上でのアプローチを検証し,実世界の一般化エージェントへの一歩を踏み出した。
論文 参考訳(メタデータ) (2024-03-14T20:40:36Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RLはメタ強化学習(Meta-RL)アルゴリズムである。
既存のMeta-RLメソッドは豊富なメタ学習データを必要とし、ロボット工学などの設定で適用性を制限する。
実験の結果,PACOH-RLはモデルベースRLおよびモデルベースMeta-RLベースラインよりも高い性能を示し,新しい動的条件に適応することがわかった。
論文 参考訳(メタデータ) (2023-11-13T18:51:57Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
実世界のアプリケーションにおける強化学習(RL)の大きな課題は、環境、タスク、クライアントの違いである。
標準的なMRL法は、タスクよりも平均的なリターンを最適化するが、リスクや難易度の高いタスクでは悪い結果に悩まされることが多い。
本研究では, MRL の頑健な目標を制御レベルで定義する。
ロバストメタRLアルゴリズム(RoML)を用いてデータ非効率に対処する
論文 参考訳(メタデータ) (2023-01-26T14:54:39Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
メタラーナーの性能を向上させるために,SiMT(Self-improving Momentum Target)を提案する。
SiMTはメタラーナーの時間アンサンブルから適応してターゲットモデルを生成する。
我々は、SiMTが幅広いメタ学習手法と組み合わせることで、大きなパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2022-10-11T06:45:15Z) - Sampling Attacks on Meta Reinforcement Learning: A Minimax Formulation
and Complexity Analysis [20.11993437283895]
本稿では,この種のセキュリティリスクを理解するためのゲーム理論的基盤を提供する。
我々は、サンプリング攻撃モデルを、攻撃者とエージェントの間のスタックルバーグゲームとして定義し、最小限の定式化をもたらす。
我々は,攻撃者の小さな努力が学習性能を著しく低下させる可能性があることを観察した。
論文 参考訳(メタデータ) (2022-07-29T21:29:29Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Mis-spoke or mis-lead: Achieving Robustness in Multi-Agent Communicative
Reinforcement Learning [37.24674549469648]
我々は、MACRLメソッドに対するメッセージアタックの実施に向けた第一歩を踏み出す。
我々はメッセージ再構成による防衛手法を開発した。
我々は、悪意あるエージェントが、防御的コミュニケーション政策の変化と改善に適応する能力を考える。
論文 参考訳(メタデータ) (2021-08-09T04:41:47Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
モデルに依存しないメタラーニング(MAML)は、数発の学習において最も成功したメタラーニング手法の1つである。
メタモデルの一般化力にもかかわらず、マルチショット学習においてMDLがいかに敵対的堅牢性を維持することができるかは明らかではない。
本稿では,ラベルなしデータ拡張,高速な攻撃生成,計算量軽微な微調整を可能にする,汎用的かつ最適化が容易なロバストネス正規化メタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-20T22:03:04Z) - Performance-Weighed Policy Sampling for Meta-Reinforcement Learning [1.77898701462905]
強化モデル非依存メタラーニング(E-MAML)は、少数のトレーニング例からポリシー関数の高速収束を生成する。
E-MAMLは、以前のタスクの環境で学んだ一連のポリシーパラメータを保持する。
E-MAMLを強化学習(RL)ベースのオンラインフォールトトレラント制御スキームの開発に適用する。
論文 参考訳(メタデータ) (2020-12-10T23:08:38Z) - Offline Meta-Reinforcement Learning with Advantage Weighting [125.21298190780259]
本稿では,オフラインメタ強化学習(オフラインメタRL)問題設定を導入し,この設定でよく機能するアルゴリズムを提案する。
オフラインメタRLは、修正済みデータの大規模なバッチ上でモデルを事前学習する、広く成功した教師付き学習戦略に類似している。
本稿では,メタトレーニングの内ループと外ループの両方に対して,シンプルかつ教師付き回帰目標を用いた最適化に基づくメタ学習アルゴリズムである,アドバンテージ重み付きメタアクタ批判(MACAW)を提案する。
論文 参考訳(メタデータ) (2020-08-13T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。