論文の概要: A Deep Learning Object Detection Method for an Efficient Clusters
Initializatio
- arxiv url: http://arxiv.org/abs/2104.13634v1
- Date: Wed, 28 Apr 2021 08:34:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 12:48:22.484390
- Title: A Deep Learning Object Detection Method for an Efficient Clusters
Initializatio
- Title(参考訳): 効率的なクラスタ初期化のためのディープラーニングオブジェクト検出法
- Authors: Hassan N. Noura, Ola Salman, Rapha\"el Couturier, Abderrahmane Sider
- Abstract要約: クラスタリングは、銀行顧客のプロファイリング、文書検索、画像セグメンテーション、Eコマースレコメンデーションエンジンなど、多くのアプリケーションで使用されている。
既存のクラスタリング技術には、初期化パラメータに対する安定性の信頼性という大きな制限がある。
本稿では,計算オーバーヘッドとリソースオーバーヘッドの少ない最適クラスタリングパラメータを提供するソリューションを提案する。
- 参考スコア(独自算出の注目度): 6.365889364810239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is an unsupervised machine learning method grouping data samples
into clusters of similar objects. In practice, clustering has been used in
numerous applications such as banking customers profiling, document retrieval,
image segmentation, and e-commerce recommendation engines. However, the
existing clustering techniques present significant limitations, from which is
the dependability of their stability on the initialization parameters (e.g.
number of clusters, centroids). Different solutions were presented in the
literature to overcome this limitation (i.e. internal and external validation
metrics). However, these solutions require high computational complexity and
memory consumption, especially when dealing with high dimensional data. In this
paper, we apply the recent object detection Deep Learning (DL) model, named
YOLO-v5, to detect the initial clustering parameters such as the number of
clusters with their sizes and possible centroids. Mainly, the proposed solution
consists of adding a DL-based initialization phase making the clustering
algorithms free of initialization. The results show that the proposed solution
can provide near-optimal clusters initialization parameters with low
computational and resources overhead compared to existing solutions.
- Abstract(参考訳): クラスタリングは教師なしの機械学習手法で、データサンプルを類似オブジェクトのクラスタにグループ化する。
実際には、銀行顧客のプロファイリング、文書検索、画像セグメンテーション、Eコマースレコメンデーションエンジンなど、多数のアプリケーションでクラスタリングが使用されている。
しかし、既存のクラスタリング技術は、初期化パラメータ(例えば、初期化パラメータ)に対する安定性の信頼性に重大な制限がある。
クラスタ数、セントロイド数)。
この制限を克服するために、文献に異なる解決策が提示された(すなわち、)。
内部および外部の検証指標)。
しかし、これらの解は特に高次元データを扱う場合、高い計算複雑性とメモリ消費を必要とする。
本稿では,最近のオブジェクト検出ディープラーニング(DL)モデルであるYOLO-v5を適用し,そのサイズと可能なセンチロイドのクラスタ数などの初期クラスタリングパラメータを検出する。
提案手法は主に,dlベースの初期化フェーズを追加することで,クラスタリングアルゴリズムを初期化から解放する。
その結果,提案手法は計算量やリソースのオーバーヘッドが少なく,最適に近いクラスタ初期化パラメータを提供できることがわかった。
関連論文リスト
- Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - Robust and Automatic Data Clustering: Dirichlet Process meets
Median-of-Means [18.3248037914529]
本稿では,モデルに基づく手法とセントロイド方式の原理を統合することにより,効率的かつ自動的なクラスタリング手法を提案する。
クラスタリング誤差の上限に関する統計的保証は,既存のクラスタリングアルゴリズムよりも提案手法の利点を示唆している。
論文 参考訳(メタデータ) (2023-11-26T19:01:15Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - An Instance Selection Algorithm for Big Data in High imbalanced datasets
based on LSH [0.0]
機械学習モデルを実環境で訓練することは、しばしば、関心のクラスが表現されていないビッグデータや不均衡なサンプルを扱う。
本研究は,大規模かつ不均衡なデータセットを扱うために,例選択(IS)という3つの新しい手法を提案する。
アルゴリズムはApache Sparkフレームワークで開発され、スケーラビリティが保証された。
論文 参考訳(メタデータ) (2022-10-09T17:38:41Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z) - Probabilistic Partitive Partitioning (PPP) [0.0]
クラスタリングアルゴリズムは一般に2つの一般的な問題に直面している。
彼らは異なる初期条件で異なる設定に収束する。
クラスタの数は、事前に任意に決めなければならない。
論文 参考訳(メタデータ) (2020-03-09T19:18:35Z) - A Hybrid Algorithm Based Robust Big Data Clustering for Solving
Unhealthy Initialization, Dynamic Centroid Selection and Empty clustering
Problems with Analysis [0.0]
クラスタリングアルゴリズムは、現代的なアプリケーションによって生成されるデータの量を分析する強力な学習ツールとして開発されている。
提案アルゴリズムEG K-MEANS : 拡張生成K-MEANSは主にK-MEANSの3つの問題を解く。
論文 参考訳(メタデータ) (2020-02-21T16:09:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。