Unsupervised Detection of Cancerous Regions in Histology Imagery using
Image-to-Image Translation
- URL: http://arxiv.org/abs/2104.13786v1
- Date: Wed, 28 Apr 2021 14:19:00 GMT
- Title: Unsupervised Detection of Cancerous Regions in Histology Imagery using
Image-to-Image Translation
- Authors: Dejan Stepec and Danijel Skocaj
- Abstract summary: Detection of visual anomalies refers to the problem of finding patterns in different imaging data that do not conform to the expected visual appearance.
Recent approaches for unsupervised detection of visual anomalies approaches omit the need for labeled data.
We present an image-to-image translation-based framework that significantly surpasses the performance of existing unsupervised methods.
- Score: 3.7692411550925673
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detection of visual anomalies refers to the problem of finding patterns in
different imaging data that do not conform to the expected visual appearance
and is a widely studied problem in different domains. Due to the nature of
anomaly occurrences and underlying generating processes, it is hard to
characterize them and obtain labeled data. Obtaining labeled data is especially
difficult in biomedical applications, where only trained domain experts can
provide labels, which often come in large diversity and complexity. Recently
presented approaches for unsupervised detection of visual anomalies approaches
omit the need for labeled data and demonstrate promising results in domains,
where anomalous samples significantly deviate from the normal appearance.
Despite promising results, the performance of such approaches still lags behind
supervised approaches and does not provide a one-fits-all solution. In this
work, we present an image-to-image translation-based framework that
significantly surpasses the performance of existing unsupervised methods and
approaches the performance of supervised methods in a challenging domain of
cancerous region detection in histology imagery.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - On the Effectiveness of Image Manipulation Detection in the Age of
Social Media [9.227950734832447]
manipulation detection algorithms often rely on the manipulated regions being sufficiently'' different from the rest of the non-tampered regions in the image.
We present an in-depth analysis of deep learning-based and learning-free methods, assessing their performance on benchmark datasets.
We propose a novel deep learning-based pre-processing technique that accentuates the anomalies present in manipulated regions.
arXiv Detail & Related papers (2023-04-19T04:05:54Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Image Synthesis as a Pretext for Unsupervised Histopathological
Diagnosis [3.7692411550925673]
Anomaly detection in visual data refers to the problem of differentiating abnormal appearances from normal cases.
Recent advances in deep generative-based models have sparked interest in applying such methods for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-04-28T14:37:23Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images.
We propose a novel self-supervised representation learning method, called Constrained Contrastive Distribution learning for anomaly detection (CCD)
Our method outperforms current state-of-the-art UAD approaches on three different colonoscopy and fundus screening datasets.
arXiv Detail & Related papers (2021-03-05T01:56:58Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful.
We develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer.
We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios.
arXiv Detail & Related papers (2020-06-19T20:41:58Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
We propose a One-for-all Image Anomaly Detection system based on disentangled learning using only clean samples.
Our experiments with three datasets show that OIAD can detect over $90%$ of anomalies while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-01-18T09:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.