Prototypical Residual Networks for Anomaly Detection and Localization
- URL: http://arxiv.org/abs/2212.02031v2
- Date: Tue, 18 Apr 2023 07:52:42 GMT
- Title: Prototypical Residual Networks for Anomaly Detection and Localization
- Authors: Hui Zhang, Zuxuan Wu, Zheng Wang, Zhineng Chen, Yu-Gang Jiang
- Abstract summary: We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
- Score: 80.5730594002466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection and localization are widely used in industrial
manufacturing for its efficiency and effectiveness. Anomalies are rare and hard
to collect and supervised models easily over-fit to these seen anomalies with a
handful of abnormal samples, producing unsatisfactory performance. On the other
hand, anomalies are typically subtle, hard to discern, and of various
appearance, making it difficult to detect anomalies and let alone locate
anomalous regions. To address these issues, we propose a framework called
Prototypical Residual Network (PRN), which learns feature residuals of varying
scales and sizes between anomalous and normal patterns to accurately
reconstruct the segmentation maps of anomalous regions. PRN mainly consists of
two parts: multi-scale prototypes that explicitly represent the residual
features of anomalies to normal patterns; a multisize self-attention mechanism
that enables variable-sized anomalous feature learning. Besides, we present a
variety of anomaly generation strategies that consider both seen and unseen
appearance variance to enlarge and diversify anomalies. Extensive experiments
on the challenging and widely used MVTec AD benchmark show that PRN outperforms
current state-of-the-art unsupervised and supervised methods. We further report
SOTA results on three additional datasets to demonstrate the effectiveness and
generalizability of PRN.
Related papers
- Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
We propose a multi-normal-pattern accommodated anomaly detection method in the frequency domain for time series anomaly detection.
There are three novel characteristics of it: (i) a pattern extraction mechanism excelling at handling diverse normal patterns with a unified model; (ii) a dualistic convolution mechanism that amplifies short-term anomalies in the time domain and hinders the reconstruction of anomalies in the frequency domain; and (iii) leveraging the sparsity and parallelism of frequency domain to enhance model efficiency.
arXiv Detail & Related papers (2023-11-26T03:31:43Z) - Open-Set Graph Anomaly Detection via Normal Structure Regularisation [30.638274744518682]
Open-set Graph Anomaly Detection (GAD) aims to train a detection model using a small number of normal and anomaly nodes.
Current supervised GAD methods tend to over-emphasise fitting the seen anomalies, leading to many errors of detecting the unseen anomalies as normal nodes.
We propose a novel open-set GAD approach, namely normal structure regularisation (NSReg), to achieve generalised detection ability to unseen anomalies.
arXiv Detail & Related papers (2023-11-12T13:25:28Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
Open-set supervised anomaly detection (OSAD) aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies.
We introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous anomaly distributions.
We show that AHL can 1) substantially enhance different state-of-the-art OSAD models in detecting seen and unseen anomalies, and 2) effectively generalize to unseen anomalies in new domains.
arXiv Detail & Related papers (2023-10-19T14:47:11Z) - Open-Set Multivariate Time-Series Anomaly Detection [7.127829790714167]
Time-series anomaly detection methods assume that only normal samples are available during the training phase.
Supervised methods can be utilized to classify normal and seen anomalies, but they tend to overfit to the seen anomalies during training.
We propose the first algorithm to address the open-set TSAD problem, called Multivariate Open-Set Time-Series Anomaly Detector (MOSAD)
MOSAD is a novel multi-head TSAD framework with a shared representation space and specialized heads, including the Generative head, the Discriminative head, and the Anomaly-Aware Contrastive head.
arXiv Detail & Related papers (2023-10-18T19:55:11Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.