論文の概要: Deep Learning for Rheumatoid Arthritis: Joint Detection and Damage
Scoring in X-rays
- arxiv url: http://arxiv.org/abs/2104.13915v1
- Date: Wed, 28 Apr 2021 17:53:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 12:57:15.900435
- Title: Deep Learning for Rheumatoid Arthritis: Joint Detection and Damage
Scoring in X-rays
- Title(参考訳): 関節リウマチに対する深層学習 : X線による関節検出と損傷検査
- Authors: Krzysztof Maziarz, Anna Krason, Zbigniew Wojna
- Abstract要約: 我々は,X線画像上の関節の局所化と2種類の関節損傷の診断を学習するマルチタスク深層学習モデルを提案する。
私たちのモデルは、グローバルRA2 DREAMチャレンジで共同スペース狭くして4位、共同侵食で5位を獲得しました。
- 参考スコア(独自算出の注目度): 1.4866746367312218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in computer vision promise to automate medical image
analysis. Rheumatoid arthritis is an autoimmune disease that would profit from
computer-based diagnosis, as there are no direct markers known, and doctors
have to rely on manual inspection of X-ray images. In this work, we present a
multi-task deep learning model that simultaneously learns to localize joints on
X-ray images and diagnose two kinds of joint damage: narrowing and erosion.
Additionally, we propose a modification of label smoothing, which combines
classification and regression cues into a single loss and achieves 5% relative
error reduction compared to standard loss functions. Our final model obtained
4th place in joint space narrowing and 5th place in joint erosion in the global
RA2 DREAM challenge.
- Abstract(参考訳): コンピュータビジョンの最近の進歩は、医療画像解析の自動化を約束している。
慢性関節リウマチは、コンピュータによる診断で利益を得る自己免疫疾患であり、直接マーカーは存在せず、医師はx線画像の手動検査に頼る必要がある。
本研究では,X線画像上の関節の局所化と2種類の関節損傷の診断を同時に行うマルチタスク深層学習モデルを提案する。
さらに,分類と回帰の手がかりを単一損失に組み合わせ,標準損失関数と比較して5%の誤差低減を実現するラベル平滑化の修正を提案する。
最終モデルは,グローバルra2ドリームチャレンジにおいて,共同空間狭化で4位,共同エロージョンで5位を得た。
関連論文リスト
- Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset [4.391219238034502]
悪性腫瘍,特に小児・青年に共通する骨折は重要な診断課題である。
近年の深部畳み込みニューラルネットワークの進歩は、外傷X線における病理検出の自動化を約束している。
従来の手作業による注釈は効果的だが、精巧で費用がかかり、専門的な専門知識を必要とする。
手動で介入することなく、X線における識別領域を自動的に識別することを目的とした、きめ細かいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-24T10:14:52Z) - CheX-Nomaly: Segmenting Lung Abnormalities from Chest Radiographs using
Machine Learning [0.0]
本稿では,二元化ローカライズU-netモデルであるCheX-nomalyを提案する。
対照的な学習手法を取り入れることで,異常局所化モデルの一般化性を大幅に向上できることを示す。
また,バウンディングボックスセグメンテーションにおけるU-nets性能を向上させるために,新たな損失手法を提案する。
論文 参考訳(メタデータ) (2023-11-03T08:27:57Z) - StenUNet: Automatic Stenosis Detection from X-ray Coronary Angiography [5.430434855741553]
冠動脈疾患(CAD)の重症度は、その位置、狭窄度(狭窄度)、血管数によって定量化される。
MICCAIの大挑戦:X線アンギオグラフィー(ARCADE)を用いた自動領域ベース冠動脈疾患診断は、狭窄アノテーションを用いたデータセットをキュレートした。
我々は,X線冠動脈造影から狭窄を正確に検出するアーキテクチャとアルゴリズムStenUNetを提案する。
論文 参考訳(メタデータ) (2023-10-23T14:04:18Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
本稿では,素因果関係を排除し,正確な因果表現を得るための解釈可能な機器変数(IV)学習フレームワークを提案する。
提案手法の性能はMIMIC-CXR,NIH ChestX-ray 14,CheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-05-20T03:12:23Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
本稿では,KellgrenおよびLawrenceグレードの分類をX線から自動的に評価する,深層学習ベースのフレームワークであるOsteHRNetを提案する。
提案モデルでは,OAIデータセットのベースラインコホートにおいて,71.74%,0.311のMAEが最良である。
論文 参考訳(メタデータ) (2021-06-27T17:29:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
X線画像のコンピュータ診断において位置病変は重要である。
一般に弱教師付き手法はX線像の特性を考慮できなかった。
自動病変検出の性能を向上させるCross-chest Graph (CCG)を提案する。
論文 参考訳(メタデータ) (2021-01-22T08:24:04Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。