論文の概要: Learning Synergistic Attention for Light Field Salient Object Detection
- arxiv url: http://arxiv.org/abs/2104.13916v1
- Date: Wed, 28 Apr 2021 17:56:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 12:44:12.794157
- Title: Learning Synergistic Attention for Light Field Salient Object Detection
- Title(参考訳): 光場高次物体検出のためのシナジスティックアテンションの学習
- Authors: Yi Zhang, Geng Chen, Qian Chen, Yujia Sun, Olivier Deforges and Lu
Zhang
- Abstract要約: 本稿では,光電界サルエント物体検出のための新しいシナジスティックアテンションネットワーク(sa-net)を提案する。
私たちのsa-netは、3次元畳み込みニューラルネットワークによる焦点スタックの豊富な情報を活用し、マルチモーダル光フィールドデータの高レベルな特徴をデコードし、サリエンシーマップを予測する。
- 参考スコア(独自算出の注目度): 12.950471181906217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel Synergistic Attention Network (SA-Net) to address the
light field salient object detection by establishing a synergistic effect
between multi-modal features with advanced attention mechanisms. Our SA-Net
exploits the rich information of focal stacks via 3D convolutional neural
networks, decodes the high-level features of multi-modal light field data with
two cascaded synergistic attention modules, and predicts the saliency map using
an effective feature fusion module in a progressive manner. Extensive
experiments on three widely-used benchmark datasets show that our SA-Net
outperforms 28 state-of-the-art models, sufficiently demonstrating its
effectiveness and superiority. Our code will be made publicly available.
- Abstract(参考訳): 本稿では,マルチモーダル特徴と高度な注意機構の相乗効果を確立することにより,光場サルエント物体検出に対応する新しい相乗的注意ネットワーク(sa-net)を提案する。
sa-netは3次元畳み込みニューラルネットワークを介して焦点スタックの豊富な情報を活用し、2つのカスケードされた相乗的注意モジュールでマルチモーダル光フィールドデータの高レベル特徴をデコードし、効果的な特徴融合モジュールを用いてサリエンシーマップを漸進的に予測する。
広く使用されている3つのベンチマークデータセットの大規模な実験により、我々のSA-Netは28の最先端モデルより優れており、その有効性と優位性を十分に証明している。
私たちのコードは公開されます。
関連論文リスト
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
光リモートセンシング画像(ORSI-SOD)のためのGlobal extract Local Exploration Network(GeleNet)を提案する。
具体的には、GeleNetはまずトランスフォーマーバックボーンを採用し、グローバルな長距離依存関係を持つ4レベルの機能埋め込みを生成する。
3つの公開データセットに関する大規模な実験は、提案されたGeleNetが関連する最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-09-15T07:14:43Z) - LMDA-Net:A lightweight multi-dimensional attention network for general
EEG-based brain-computer interface paradigms and interpretability [2.3945862743903916]
LMDA-Netと呼ばれる,軽量な多次元アテンションネットワークを提案する。
EEG信号用に設計された2つの新しいアテンションモジュールを組み込むことで、LMDA-Netは複数の次元の特徴を効果的に統合できる。
LMDA-Netは、分類精度とボラティリティの予測の観点から、他の代表的手法よりも優れている。
論文 参考訳(メタデータ) (2023-03-29T02:35:02Z) - A3CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural
Network for Multisource Remote Sensing Data Classification [24.006660419933727]
本稿では,ハイパースペクトル画像(HSI)と光検出・測光(LiDAR)の2つのデータソースを補完する手法を提案する。
我々は,特徴抽出と分類のための2チャネル空間,スペクトル,マルチスケールの長期記憶ニューラルネットワーク(デュアルチャネルA3CLNN)を開発した。
論文 参考訳(メタデータ) (2022-04-09T12:43:32Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
本稿では,新しいCasscade Bi-directional Fusion(CB-Fusion)モジュールを導入することで,マルチモーダル3Dオブジェクト検出のためのEPNet++を提案する。
提案したCB-Fusionモジュールは、カスケード双方向相互作用融合方式で画像特徴と点特徴の豊富な意味情報を高める。
KITTI、JRDB、SUN-RGBDデータセットの実験結果は、最先端の手法よりもEPNet++の方が優れていることを示している。
論文 参考訳(メタデータ) (2021-12-21T10:48:34Z) - Specificity-preserving RGB-D Saliency Detection [103.3722116992476]
本稿では,RGB-Dサリエンシ検出のための特異性保存ネットワーク(SP-Net)を提案する。
2つのモダリティ特化ネットワークと共有学習ネットワークを採用し、個別および共有唾液マップを生成する。
6つのベンチマークデータセットの実験では、SP-Netは他の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2021-08-18T14:14:22Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。