Learning Robust Variational Information Bottleneck with Reference
- URL: http://arxiv.org/abs/2104.14379v1
- Date: Thu, 29 Apr 2021 14:46:09 GMT
- Title: Learning Robust Variational Information Bottleneck with Reference
- Authors: Weizhu Qian, Bowei Chen, Xiaowei Huang
- Abstract summary: We propose a new approach to train a variational information bottleneck (VIB) that improves its robustness to adversarial perturbations.
We refine the categorical class information in the training phase with soft labels which are obtained from a pre-trained reference neural network.
- Score: 12.743882133781598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new approach to train a variational information bottleneck (VIB)
that improves its robustness to adversarial perturbations. Unlike the
traditional methods where the hard labels are usually used for the
classification task, we refine the categorical class information in the
training phase with soft labels which are obtained from a pre-trained reference
neural network and can reflect the likelihood of the original class labels. We
also relax the Gaussian posterior assumption in the VIB implementation by using
the mutual information neural estimation. Extensive experiments have been
performed with the MNIST and CIFAR-10 datasets, and the results show that our
proposed approach significantly outperforms the benchmarked models.
Related papers
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
Cross entropy loss can easily lead us to find models which demonstrate severe overfitting behavior.
In this paper, we prove that the existing cross entropy loss minimization for training DNN classifiers essentially learns the conditional entropy of the underlying data distribution.
We propose a mutual information learning framework where we train DNN classifiers via learning the mutual information between the label and input.
arXiv Detail & Related papers (2022-10-03T15:09:19Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Robust Neural Network Classification via Double Regularization [2.41710192205034]
We propose a novel double regularization of the neural network training loss that combines a penalty on the complexity of the classification model and an optimal reweighting of training observations.
We demonstrate DRFit, for neural net classification of (i) MNIST and (ii) CIFAR-10, in both cases with simulated mislabeling.
arXiv Detail & Related papers (2021-12-15T13:19:20Z) - Meta-Learning for Neural Relation Classification with Distant
Supervision [38.755055486296435]
We propose a meta-learning based approach, which learns to reweight noisy training data under the guidance of reference data.
Experiments on several datasets demonstrate that the reference data can effectively guide the selection of training data.
arXiv Detail & Related papers (2020-10-26T12:52:28Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - COLAM: Co-Learning of Deep Neural Networks and Soft Labels via
Alternating Minimization [60.07531696857743]
Co-Learns DNNs and soft labels through Alternating Minimization of two objectives.
We propose COLAM framework that Co-Learns DNNs and soft labels through Alternating Minimization of two objectives.
arXiv Detail & Related papers (2020-04-26T17:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.