Robust Neural Network Classification via Double Regularization
- URL: http://arxiv.org/abs/2112.08102v1
- Date: Wed, 15 Dec 2021 13:19:20 GMT
- Title: Robust Neural Network Classification via Double Regularization
- Authors: Olof Zetterqvist, Rebecka J\"ornsten, Johan Jonasson
- Abstract summary: We propose a novel double regularization of the neural network training loss that combines a penalty on the complexity of the classification model and an optimal reweighting of training observations.
We demonstrate DRFit, for neural net classification of (i) MNIST and (ii) CIFAR-10, in both cases with simulated mislabeling.
- Score: 2.41710192205034
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The presence of mislabeled observations in data is a notoriously challenging
problem in statistics and machine learning, associated with poor generalization
properties for both traditional classifiers and, perhaps even more so, flexible
classifiers like neural networks. Here we propose a novel double regularization
of the neural network training loss that combines a penalty on the complexity
of the classification model and an optimal reweighting of training
observations. The combined penalties result in improved generalization
properties and strong robustness against overfitting in different settings of
mislabeled training data and also against variation in initial parameter values
when training. We provide a theoretical justification for our proposed method
derived for a simple case of logistic regression. We demonstrate the double
regularization model, here denoted by DRFit, for neural net classification of
(i) MNIST and (ii) CIFAR-10, in both cases with simulated mislabeling. We also
illustrate that DRFit identifies mislabeled data points with very good
precision. This provides strong support for DRFit as a practical of-the-shelf
classifier, since, without any sacrifice in performance, we get a classifier
that simultaneously reduces overfitting against mislabeling and gives an
accurate measure of the trustworthiness of the labels.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Fixed Random Classifier Rearrangement for Continual Learning [0.5439020425819]
In visual classification scenario, neural networks inevitably forget the knowledge of old tasks after learning new ones.
We propose a continual learning algorithm named Fixed Random Rearrangement (FRCR)
arXiv Detail & Related papers (2024-02-23T09:43:58Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Regularized Linear Regression for Binary Classification [20.710343135282116]
Regularized linear regression is a promising approach for binary classification problems in which the training set has noisy labels.
We show that for large enough regularization strength, the optimal weights concentrate around two values of opposite sign.
We observe that in many cases the corresponding "compression" of each weight to a single bit leads to very little loss in performance.
arXiv Detail & Related papers (2023-11-03T23:18:21Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
We consider the generalization error of two-layer neural networks trained to generalize by gradient descent.
We show that neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error.
In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
arXiv Detail & Related papers (2022-02-11T23:04:00Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
Label-imbalanced and group-sensitive classification seeks to appropriately modify standard training algorithms to optimize relevant metrics.
We show that a logit-adjusted loss modification to standard empirical risk minimization might be ineffective in general.
We show that our results extend naturally to binary classification with sensitive groups, thus treating the two common types of imbalances (label/group) in a unifying way.
arXiv Detail & Related papers (2021-03-02T08:09:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.