論文の概要: Discriminative-Generative Dual Memory Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2104.14430v1
- Date: Thu, 29 Apr 2021 15:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 12:58:44.921427
- Title: Discriminative-Generative Dual Memory Video Anomaly Detection
- Title(参考訳): 識別生成デュアルメモリビデオ異常検出
- Authors: Xin Guo, Zhongming Jin, Chong Chen, Helei Nie, Jianqiang Huang, Deng
Cai, Xiaofei He, Xiansheng Hua
- Abstract要約: 近年,ビデオ異常検出(VAD)には,トレーニングプロセス中に通常のデータに代えて,いくつかの異常を使おうと試みている。
本稿では,いくつかの異常を生かしてデータの不均衡を解決するために,識別生成型デュアルメモリ(dream)異常検出モデルを提案する。
- 参考スコア(独自算出の注目度): 81.09977516403411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, people tried to use a few anomalies for video anomaly detection
(VAD) instead of only normal data during the training process. A side effect of
data imbalance occurs when a few abnormal data face a vast number of normal
data. The latest VAD works use triplet loss or data re-sampling strategy to
lessen this problem. However, there is still no elaborately designed structure
for discriminative VAD with a few anomalies. In this paper, we propose a
DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take
advantage of a few anomalies and solve data imbalance. We use two shallow
discriminators to tighten the normal feature distribution boundary along with a
generator for the next frame prediction. Further, we propose a dual memory
module to obtain a sparse feature representation in both normality and
abnormality space. As a result, DREAM not only solves the data imbalance
problem but also learn a reasonable feature space. Further theoretical analysis
shows that our DREAM also works for the unknown anomalies. Comparing with the
previous methods on UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech, our
model outperforms all the baselines with no extra parameters. The ablation
study demonstrates the effectiveness of our dual memory module and
discriminative-generative network.
- Abstract(参考訳): 近年,ビデオ異常検出(VAD)には,トレーニングプロセス中に通常のデータに代えて,いくつかの異常を使おうと試みている。
データ不均衡の副作用は、少数の異常データが大量の正規データに直面したときに発生する。
最新のVADでは、トリプルト損失やデータ再サンプリング戦略を使用してこの問題を軽減する。
しかし、いくつかの異常のある識別的vadのための精巧に設計された構造はいまだに存在しない。
本稿では,いくつかの異常を生かしてデータの不均衡を解決するために,識別生成型デュアルメモリ(dream)異常検出モデルを提案する。
2つの浅い判別器を用いて、通常の特徴分布境界と次のフレーム予測のためのジェネレータを締め付ける。
さらに、正規性と異常空間の両方においてスパース特徴表現を得るためのデュアルメモリモジュールを提案する。
その結果、DREAMはデータ不均衡問題を解決するだけでなく、合理的な特徴空間も学習する。
さらに理論的には、DREAMは未知の異常にも有効である。
UCSD Ped1, UCSD Ped2, CUHK Avenue, ShanghaiTechの従来の手法と比較して, 我々のモデルは余分なパラメータなしで全てのベースラインを上回ります。
アブレーション研究は,デュアルメモリモジュールと識別生成ネットワークの有効性を示す。
関連論文リスト
- FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data [1.0650780147044159]
ラベルなしおよび潜在的に汚染されたトレーニングデータを用いた完全教師なし異常検出のための新しい学習ベースアプローチを提案する。
本手法は, 2つの観測結果から, 正常試料間の対特徴距離が, 異常試料や異種試料間の対特徴距離よりも平均的に小さい可能性が示唆され, 互いに近接する2つの特徴対が等質な対である可能性が示唆された。
本研究は, 近接する近傍距離が信頼度の高いサンプルと異常を区別できることを示す最初の観測結果に基づいて, 反復的に再構成されたメモリバンクを用いた擬似ラベル方式を提案する。
論文 参考訳(メタデータ) (2024-11-25T05:51:38Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
複数のシステムにまたがる意味的関係推論を組み込んだ新しい異常検出モデルMLADを提案する。
具体的には、Sentence-bertを用いてログシーケンス間の類似性を捉え、それらを高次元の学習可能な意味ベクトルに変換する。
我々は,各キーワードのシーケンスにおける意義を識別し,マルチシステムデータセットの全体分布をモデル化するために,アテンション層の公式を改訂する。
論文 参考訳(メタデータ) (2024-01-15T12:51:13Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection [15.991784541576788]
ビデオとセグメントレベルのラベル指向の既存のアプローチは、主に異常データの表現の抽出に重点を置いている。
本研究では、正規データの表現と異常データの識別特徴の両方を学習するために、不確実性制御デュアルメモリユニット(UR-DMU)モデルを提案する。
我々の手法は、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-02-10T10:39:40Z) - Anomaly Detection via Multi-Scale Contrasted Memory [3.0170109896527086]
マルチスケールの標準プロトタイプをトレーニング中に記憶し,異常偏差値を計算する2段階の異常検出器を新たに導入する。
CIFAR-10の誤差相対改善率を最大35%とすることにより,多種多様なオブジェクト,スタイル,局所異常に対する最先端性能を高い精度で向上させる。
論文 参考訳(メタデータ) (2022-11-16T16:58:04Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Deep Visual Anomaly detection with Negative Learning [18.79849041106952]
本稿では、異常検出の強化に負の学習概念を用いる、負の学習を伴う異常検出(ADNL)を提案する。
その考え方は、与えられた少数の異常例を用いて生成モデルの再構成能力を制限することである。
このようにして、ネットワークは通常のデータを再構築することを学ぶだけでなく、異常の可能性のある分布から遠く離れた正規分布を囲む。
論文 参考訳(メタデータ) (2021-05-24T01:48:44Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。