論文の概要: A User-Guided Bayesian Framework for Ensemble Feature Selection in Life
Science Applications (UBayFS)
- arxiv url: http://arxiv.org/abs/2104.14787v1
- Date: Fri, 30 Apr 2021 06:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:28:27.861760
- Title: A User-Guided Bayesian Framework for Ensemble Feature Selection in Life
Science Applications (UBayFS)
- Title(参考訳): ライフサイエンスアプリケーション(UBayFS)の機能選択のためのユーザガイド型ベイズフレームワーク
- Authors: Anna Jenul, Stefan Schrunner, J\"urgen Pilz, Oliver Tomic
- Abstract要約: 本稿では,ベイズ統計フレームワークに組み込んだアンサンブル特徴選択手法UBayFSを提案する。
提案手法は,データとドメイン知識の2つの情報源を考慮し,特徴選択のプロセスを強化する。
標準的な機能セレクタとの比較では、UBayFSは競争力のあるパフォーマンスを実現し、ドメイン知識を組み込むための柔軟性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training predictive models on high-dimensional datasets is a challenging task
in artificial intelligence. Users must take measures to prevent overfitting and
keep model complexity low. Thus, the feature selection plays a key role in data
preprocessing and delivers insights into the systematic variation in the data.
The latter aspect is crucial in domains that rely on model interpretability,
such as life sciences. We propose UBayFS, an ensemble feature selection
technique, embedded in a Bayesian statistical framework. Our approach enhances
the feature selection process by considering two sources of information: data
and domain knowledge. Therefore, we build an ensemble of elementary feature
selectors that extract information from empirical data, leading to a
meta-model, which compensates for inconsistencies between elementary feature
selectors. The user guides UBayFS by weighting features and penalizing specific
feature combinations. The framework builds on a multinomial likelihood and a
novel version of constrained Dirichlet-type prior distribution, involving
initial feature weights and side constraints. In a quantitative evaluation, we
demonstrate that the presented framework allows for a balanced trade-off
between user knowledge and data observations. A comparison with standard
feature selectors underlines that UBayFS achieves competitive performance,
while providing additional flexibility to incorporate domain knowledge.
- Abstract(参考訳): 高次元データセットでの予測モデルのトレーニングは、人工知能において難しい課題である。
ユーザーは過度な適合を防ぎ、モデルの複雑さを低く抑えなければならない。
このように、機能選択はデータ前処理において重要な役割を担い、データの体系的な変動に関する洞察を提供する。
後者の側面は、生命科学のようなモデル解釈可能性に依存する領域において重要である。
本稿では,ベイズ統計フレームワークに組み込んだアンサンブル特徴選択手法UBayFSを提案する。
提案手法は,データとドメイン知識の2つの情報源を考慮し,特徴選択のプロセスを強化する。
そこで,実験データから情報を抽出する基本特徴セレクタのアンサンブルを構築し,基本特徴セレクタ間の不整合を補償するメタモデルを構築した。
ユーザーはUBayFSを、特徴の重み付けと特定の特徴の組み合わせのペナルティ化によってガイドする。
このフレームワークは多項確率と制約付きディリクレ型事前分布の新しいバージョンに基づいており、初期特徴重みと側面制約を含んでいる。
定量的評価では,提案フレームワークがユーザ知識とデータ観測のバランスのとれたトレードオフを可能にすることを示す。
標準的な機能セレクタとの比較では、UBayFSは競争力のあるパフォーマンスを実現し、ドメイン知識を組み込むための柔軟性を提供する。
関連論文リスト
- Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - A data-science pipeline to enable the Interpretability of Many-Objective
Feature Selection [0.1474723404975345]
多目的特徴選択(MOFS)アプローチは、4つ以上の目的を用いて、教師付き学習タスクにおける機能のサブセットの関連性を決定する。
本稿では,MOFS結果の解釈と比較においてデータサイエンティストを支援する手法を提案する。
論文 参考訳(メタデータ) (2023-11-30T17:44:22Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - FedSDG-FS: Efficient and Secure Feature Selection for Vertical Federated
Learning [21.79965380400454]
Vertical Learning(VFL)は、複数のデータオーナに対して、大きな重複するデータサンプルセットに関する機能のサブセットをそれぞれ保持して、有用なグローバルモデルを共同でトレーニングすることを可能にする。
VFLのために設計された既存のFSは、ノイズの多い特徴の数について事前知識を仮定するか、有用な特徴の訓練後のしきい値について事前知識を仮定する。
本稿では,FedSDG-FS(Federated Dual-Gate Based Feature Selection)アプローチを提案する。
論文 参考訳(メタデータ) (2023-02-21T03:09:45Z) - A-SFS: Semi-supervised Feature Selection based on Multi-task
Self-supervision [1.3190581566723918]
機能選択問題に深層学習に基づく自己教師機構を導入する。
バッチベースの特徴選択パターンに従って特徴量を生成するために、バッチアテンション機構が設計されている。
実験の結果,ほとんどのデータセットにおいてA-SFSが最も精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-07-19T04:22:27Z) - Feature Selection for Huge Data via Minipatch Learning [0.0]
安定ミニパッチ選択(STAMPS)と適応STAMPSを提案する。
STAMPSは、データの観測と特徴の両方の小さな(適応性の高い)ランダムなサブセットに基づいて訓練された基本特徴セレクタの選択イベントのアンサンブルを構築するメタアルゴリズムである。
われわれのアプローチは一般的であり、様々な機能選択戦略や機械学習技術に応用できる。
論文 参考訳(メタデータ) (2020-10-16T17:41:08Z) - RENT -- Repeated Elastic Net Technique for Feature Selection [0.46180371154032895]
特徴選択のための繰り返し弾性ネット技術(RENT)を提案する。
RENTは、弾力性のあるネット正規化を備えた一般化線形モデルのアンサンブルを使用しており、それぞれがトレーニングデータの異なるサブセットに基づいて訓練されている。
RENTは、トレーニング中に予測が難しいデータ内のオブジェクトの識別に関するモデル解釈のための貴重な情報を提供する。
論文 参考訳(メタデータ) (2020-09-27T07:55:52Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。