論文の概要: Interpretability of Epidemiological Models : The Curse of
Non-Identifiability
- arxiv url: http://arxiv.org/abs/2104.14821v1
- Date: Fri, 30 Apr 2021 08:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 21:30:01.848506
- Title: Interpretability of Epidemiological Models : The Curse of
Non-Identifiability
- Title(参考訳): 疫学モデルの解釈可能性 : 非識別性の呪い
- Authors: Ayush Deva, Siddhant Shingi, Avtansh Tiwari, Nayana Bannur, Sansiddh
Jain, Jerome White, Alpan Raval, Srujana Merugu
- Abstract要約: 疫学モデルの解釈可能性は重要な考慮事項であり、特にこれらのモデルが公衆衛生環境で使用される場合である。
本稿では、モデル定義、損失関数、適合方法、データの質と量によって果たすさまざまな役割を探求する識別可能性という3つの異なる概念を定義します。
- 参考スコア(独自算出の注目度): 1.8518446560201374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability of epidemiological models is a key consideration, especially
when these models are used in a public health setting. Interpretability is
strongly linked to the identifiability of the underlying model parameters,
i.e., the ability to estimate parameter values with high confidence given
observations. In this paper, we define three separate notions of
identifiability that explore the different roles played by the model
definition, the loss function, the fitting methodology, and the quality and
quantity of data. We define an epidemiological compartmental model framework in
which we highlight these non-identifiability issues and their mitigation.
- Abstract(参考訳): 疫学モデルの解釈可能性は重要な考慮事項であり、特にこれらのモデルが公衆衛生環境で使用される場合である。
解釈可能性は、基礎となるモデルパラメータの識別可能性、すなわち高信頼度でパラメータ値を推定する能力と強く結びついている。
本稿では,モデル定義が果たす役割,損失関数,適合方法論,データの質と量について考察する,識別可能性の3つの概念を定義する。
我々は、これらの非識別性問題とその緩和を強調する疫学的区分モデルフレームワークを定義する。
関連論文リスト
- On the Parameter Identifiability of Partially Observed Linear Causal Models [23.08796869216895]
因果構造と部分的に観察されたデータからエッジ係数を復元できるかどうかを検討する。
部分的に観察された線形因果モデルにおいて,パラメータの非決定性は3種類ある。
本稿では,潜伏変数の分散不確定性に特定の方法で対処する,確率に基づくパラメータ推定手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T03:43:55Z) - Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
医用画像では、AIモデルの予測の背後にある根拠を明らかにすることが、信頼性を評価する上で重要である。
本稿では,意思決定推論と特徴識別機能を備えた説明可能なモデルを提案する。
提案手法を実装することにより,データ駆動モデルにより活用されるクラス固有の特徴を効果的に識別および可視化することができる。
論文 参考訳(メタデータ) (2024-05-23T19:00:38Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
因果解離は因果モデルを通して相互に関係する潜伏変数を用いてデータの表現を明らかにすることを目的としている。
本稿では,各介入が潜伏変数のメカニズムを変えることにより,未ペアの観測データと介入データが利用可能となるシナリオに焦点を当てる。
因果変数が完全に観測されると、忠実性の仮定の下で因果モデルを特定するために統計的に一貫したアルゴリズムが開発された。
論文 参考訳(メタデータ) (2023-07-12T15:39:39Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
我々は,抑うつ,抑うつ症状,および,胸腺で収集された音声,表情,認知ゲームデータから得られる特徴の関連性を把握するためにベイズ的枠組みを適用した。
論文 参考訳(メタデータ) (2022-11-09T14:48:13Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - A Meta-Bayesian Model of Intentional Visual Search [0.0]
本稿では,分類的知覚とササード計画の根底にある神経機構のベイズ的解釈を取り入れたビジュアルサーチの計算モデルを提案する。
擬似行動と人的行動の有意義な比較を可能にするため、参加者は視線に追従する窓から隠蔽されたMNIST桁を分類する必要がある。
本モデルは,観察された人間の行動から主観的パラメータを回収し,高い解釈可能性を維持しながら,分類精度などの人間の行動指標を再カプセル化することができる。
論文 参考訳(メタデータ) (2020-06-05T16:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。