BERT Meets Relational DB: Contextual Representations of Relational
Databases
- URL: http://arxiv.org/abs/2104.14914v1
- Date: Fri, 30 Apr 2021 11:23:26 GMT
- Title: BERT Meets Relational DB: Contextual Representations of Relational
Databases
- Authors: Siddhant Arora, Vinayak Gupta, Garima Gaur, Srikanta Bedathur
- Abstract summary: We address the problem of learning low dimension representation of entities on relational databases consisting of multiple tables.
We look into ways of using these attention-based model to learn embeddings for entities in the relational database.
- Score: 4.029818252558553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the problem of learning low dimension
representation of entities on relational databases consisting of multiple
tables. Embeddings help to capture semantics encoded in the database and can be
used in a variety of settings like auto-completion of tables, fully-neural
query processing of relational joins queries, seamlessly handling missing
values, and more. Current work is restricted to working with just single table,
or using pretrained embeddings over an external corpus making them unsuitable
for use in real-world databases. In this work, we look into ways of using these
attention-based model to learn embeddings for entities in the relational
database. We are inspired by BERT style pretraining methods and are interested
in observing how they can be extended for representation learning on structured
databases. We evaluate our approach of the autocompletion of relational
databases and achieve improvement over standard baselines.
Related papers
- Can Language Models Enable In-Context Database? [3.675766365690372]
Large language models (LLMs) are emerging as few-shot learners capable of handling a variety of tasks.
The lightweight and human readable characteristics of in-context database can potentially make it an alternative for the traditional database.
arXiv Detail & Related papers (2024-11-04T05:25:39Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
We introduce an end-to-end representation approach to learn on data laid out across multiple tables.
Message Passing Graph Neural Networks can then automatically learn across the graph to extract representations that leverage all data input.
arXiv Detail & Related papers (2023-12-07T18:51:41Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
We propose a novel framework called Graph-based Feature Synthesis (GFS)
GFS formulates relational database as a heterogeneous graph database.
In an experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases.
arXiv Detail & Related papers (2023-12-04T16:54:40Z) - AskYourDB: An end-to-end system for querying and visualizing relational
databases using natural language [0.0]
We propose a semantic parsing approach to address the challenge of converting complex natural language into SQL.
We modified state-of-the-art models, by various pre and post processing steps which make the significant part when a model is deployed in production.
To make the product serviceable to businesses we added an automatic visualization framework over the queried results.
arXiv Detail & Related papers (2022-10-16T13:31:32Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - A Graph Representation of Semi-structured Data for Web Question
Answering [96.46484690047491]
We propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations.
Our method improves F1 score by 3.90 points over the state-of-the-art baselines.
arXiv Detail & Related papers (2020-10-14T04:01:54Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Table Search Using a Deep Contextualized Language Model [20.041167804194707]
In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval.
We propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT.
arXiv Detail & Related papers (2020-05-19T04:18:04Z) - On Embeddings in Relational Databases [11.52782249184251]
We address the problem of learning a distributed representation of entities in a relational database using a low-dimensional embedding.
Recent methods for learning embedding constitute of a naive approach to consider complete denormalization of the database by relationalizing the full join of all tables and representing as a knowledge graph.
In this paper we demonstrate; a better methodology for learning representations by exploiting the underlying semantics of columns in a table while using the relation joins and the latent inter-row relationships.
arXiv Detail & Related papers (2020-05-13T17:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.