論文の概要: On In-network learning. A Comparative Study with Federated and Split
Learning
- arxiv url: http://arxiv.org/abs/2104.14929v1
- Date: Fri, 30 Apr 2021 11:50:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:50:49.906862
- Title: On In-network learning. A Comparative Study with Federated and Split
Learning
- Title(参考訳): ネットワーク上での学習。
フェデレーション学習とスプリット学習の比較研究
- Authors: Matei Moldoveanu and Abdellatif Zaidi
- Abstract要約: 本稿では,無線ネットワークにおいて,分散抽出機能を用いて推論を行う問題について考察する。
本稿では,提案するアーキテクチャを「ネットワーク内学習」と呼び,適切な損失関数を提供し,ニューラルネットワークを用いた最適化について考察する。
- 参考スコア(独自算出の注目度): 14.924672048447338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider a problem in which distributively extracted
features are used for performing inference in wireless networks. We elaborate
on our proposed architecture, which we herein refer to as "in-network
learning", provide a suitable loss function and discuss its optimization using
neural networks. We compare its performance with both Federated- and Split
learning; and show that this architecture offers both better accuracy and
bandwidth savings.
- Abstract(参考訳): 本稿では,無線ネットワークにおいて,分散抽出機能を用いて推論を行う問題について考察する。
本稿では,提案するアーキテクチャを「ネットワーク内学習」と呼び,適切な損失関数を提供し,ニューラルネットワークを用いた最適化について考察する。
我々はフェデレート学習とスプリット学習を比較し、このアーキテクチャがより精度と帯域幅の節約を提供することを示す。
関連論文リスト
- Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
3層ニューラルネットワークは,2層ネットワークよりも特徴学習能力が豊富であることを示す。
この研究は、特徴学習体制における2層ネットワーク上の3層ニューラルネットワークの証明可能なメリットを理解するための前進である。
論文 参考訳(メタデータ) (2023-05-11T17:19:30Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Distributed Learning for Time-varying Networks: A Scalable Design [13.657740129012804]
本稿では,スケーラブルなディープニューラルネットワーク(DNN)設計に基づく分散学習フレームワークを提案する。
学習タスクの置換等価性と不変性を利用することで、異なるスケールのクライアントに対して異なるスケールのDNNを構築することができる。
モデルアグリゲーションはこれらの2つのサブマトリクスに基づいて行うことができ、学習の収束と性能を改善することができる。
論文 参考訳(メタデータ) (2021-07-31T12:44:28Z) - The Principles of Deep Learning Theory [19.33681537640272]
この本は、実践的妥当性の深いニューラルネットワークを理解するための効果的な理論アプローチを開発する。
これらのネットワークがトレーニングから非自明な表現を効果的に学習する方法について説明する。
トレーニングネットワークのアンサンブルの有効モデル複雑性を,奥行き比が支配していることを示す。
論文 参考訳(メタデータ) (2021-06-18T15:00:00Z) - Learning distinct features helps, provably [98.78384185493624]
最小二乗損失で訓練された2層ニューラルネットワークによって学習された特徴の多様性について検討する。
隠蔽層の特徴間の平均的な$L$-distanceで多様性を測定する。
論文 参考訳(メタデータ) (2021-06-10T19:14:45Z) - Understanding and Improvement of Adversarial Training for Network
Embedding from an Optimization Perspective [31.312873512603808]
Network Embeddingは、ノードをユークリッド空間にマッピングする関数を学習することを目的としており、ネットワーク上の複数の学習分析タスクに寄与する。
これらの問題に対処するために、研究者はAdvTNE(Adversarial Training for Network Embedding)を用いて最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-17T16:41:53Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。