PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback
- URL: http://arxiv.org/abs/2104.14962v1
- Date: Fri, 30 Apr 2021 13:00:44 GMT
- Title: PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback
- Authors: Yuncong Yu, Dylan Kruyff, Tim Becker, Michael Behrisch
- Abstract summary: PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
- Score: 3.347485580830609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present PSEUDo, an adaptive feature learning technique for exploring
visual patterns in multi-track sequential data. Our approach is designed with
the primary focus to overcome the uneconomic retraining requirements and
inflexible representation learning in current deep learning-based systems.
Multi-track time series data are generated on an unprecedented scale due to
increased sensors and data storage. These datasets hold valuable patterns, like
in neuromarketing, where researchers try to link patterns in multivariate
sequential data from physiological sensors to the purchase behavior of products
and services. But a lack of ground truth and high variance make automatic
pattern detection unreliable. Our advancements are based on a novel query-aware
locality-sensitive hashing technique to create a feature-based representation
of multivariate time series windows. Most importantly, our algorithm features
sub-linear training and inference time. We can even accomplish both the
modeling and comparison of 10,000 different 64-track time series, each with 100
time steps (a typical EEG dataset) under 0.8 seconds. This performance gain
allows for a rapid relevance feedback-driven adaption of the underlying pattern
similarity model and enables the user to modify the speed-vs-accuracy trade-off
gradually. We demonstrate superiority of PSEUDo in terms of efficiency,
accuracy, and steerability through a quantitative performance comparison and a
qualitative visual quality comparison to the state-of-the-art algorithms in the
field. Moreover, we showcase the usability of PSEUDo through a case study
demonstrating our visual pattern retrieval concepts in a large meteorological
dataset. We find that our adaptive models can accurately capture the user's
notion of similarity and allow for an understandable exploratory visual pattern
retrieval in large multivariate time series datasets.
Related papers
- SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
We propose SMORE, a novel resource-efficient domain adaptation (DA) algorithm for multi-sensor time series classification.
SMORE achieves on average 1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA algorithms with 18.81x faster training and 4.63x faster inference.
arXiv Detail & Related papers (2024-02-20T18:48:49Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Graph-Aware Contrasting for Multivariate Time-Series Classification [50.84488941336865]
Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques.
We propose Graph-Aware Contrasting for spatial consistency across MTS data.
Our proposed method achieves state-of-the-art performance on various MTS classification tasks.
arXiv Detail & Related papers (2023-09-11T02:35:22Z) - TimeTuner: Diagnosing Time Representations for Time-Series Forecasting
with Counterfactual Explanations [3.8357850372472915]
This paper contributes a novel visual analytics framework, namely TimeTuner, to help analysts understand how model behaviors are associated with localized, stationarity, and correlations of time-series representations.
We show that TimeTuner can help characterize time-series representations and guide the feature engineering processes.
arXiv Detail & Related papers (2023-07-19T11:40:15Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
We propose MADS, a novel auto-decoding framework for time series imputation, built upon implicit neural representations.
We evaluate our model on two real-world datasets, and show that it outperforms state-of-the-art methods for time series imputation.
arXiv Detail & Related papers (2023-07-03T09:08:47Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.