Graph-Aware Contrasting for Multivariate Time-Series Classification
- URL: http://arxiv.org/abs/2309.05202v3
- Date: Wed, 10 Jan 2024 07:12:47 GMT
- Title: Graph-Aware Contrasting for Multivariate Time-Series Classification
- Authors: Yucheng Wang, Yuecong Xu, Jianfei Yang, Min Wu, Xiaoli Li, Lihua Xie,
Zhenghua Chen
- Abstract summary: Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques.
We propose Graph-Aware Contrasting for spatial consistency across MTS data.
Our proposed method achieves state-of-the-art performance on various MTS classification tasks.
- Score: 50.84488941336865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Contrastive learning, as a self-supervised learning paradigm, becomes popular
for Multivariate Time-Series (MTS) classification. It ensures the consistency
across different views of unlabeled samples and then learns effective
representations for these samples. Existing contrastive learning methods mainly
focus on achieving temporal consistency with temporal augmentation and
contrasting techniques, aiming to preserve temporal patterns against
perturbations for MTS data. However, they overlook spatial consistency that
requires the stability of individual sensors and their correlations. As MTS
data typically originate from multiple sensors, ensuring spatial consistency
becomes essential for the overall performance of contrastive learning on MTS
data. Thus, we propose Graph-Aware Contrasting for spatial consistency across
MTS data. Specifically, we propose graph augmentations including node and edge
augmentations to preserve the stability of sensors and their correlations,
followed by graph contrasting with both node- and graph-level contrasting to
extract robust sensor- and global-level features. We further introduce
multi-window temporal contrasting to ensure temporal consistency in the data
for each sensor. Extensive experiments demonstrate that our proposed method
achieves state-of-the-art performance on various MTS classification tasks. The
code is available at https://github.com/Frank-Wang-oss/TS-GAC.
Related papers
- Contrast Similarity-Aware Dual-Pathway Mamba for Multivariate Time Series Node Classification [9.159556125198305]
We propose contrast similarity-aware dual-pathway Mamba for MTS node classification (CS-DPMamba)
We construct a similarity matrix between MTS representations using Fast Dynamic Time Warping (FastDTW)
By considering the long-range dependencies and dynamic similarity features, we achieved precise MTS node classification.
arXiv Detail & Related papers (2024-11-19T04:32:41Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - STS-CCL: Spatial-Temporal Synchronous Contextual Contrastive Learning
for Urban Traffic Forecasting [4.947443433688782]
This work employs the advanced contrastive learning and proposes a novel Spatial-Temporalous Contextual Contrastive Learning (STS-CCL) model.
Experiments and evaluations demonstrate that building a predictor upon STS-CCL contrastive learning model gains superior performance than existing traffic forecasting benchmarks.
arXiv Detail & Related papers (2023-07-05T03:47:28Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
We study time-series classification (TSC), a fundamental task of time-series data mining.
We propose Similarity-Aware Time-Series Classification (SimTSC), a framework that models similarity information with graph neural networks (GNNs)
arXiv Detail & Related papers (2022-01-05T02:14:57Z) - TCGL: Temporal Contrastive Graph for Self-supervised Video
Representation Learning [79.77010271213695]
We propose a novel video self-supervised learning framework named Temporal Contrastive Graph Learning (TCGL)
Our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet Temporal Contrastive Graphs (TCG)
To generate supervisory signals for unlabeled videos, we introduce an Adaptive Snippet Order Prediction (ASOP) module.
arXiv Detail & Related papers (2021-12-07T09:27:56Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Spatial-Temporal Multi-Cue Network for Continuous Sign Language
Recognition [141.24314054768922]
We propose a spatial-temporal multi-cue (STMC) network to solve the vision-based sequence learning problem.
To validate the effectiveness, we perform experiments on three large-scale CSLR benchmarks.
arXiv Detail & Related papers (2020-02-08T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.