Entangling Quantum Generative Adversarial Networks
- URL: http://arxiv.org/abs/2105.00080v2
- Date: Mon, 24 May 2021 02:19:32 GMT
- Title: Entangling Quantum Generative Adversarial Networks
- Authors: Murphy Yuezhen Niu, Alexander Zlokapa, Michael Broughton, Sergio
Boixo, Masoud Mohseni, Vadim Smelyanskyi, Hartmut Neven
- Abstract summary: We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
- Score: 53.25397072813582
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generative adversarial networks (GANs) are one of the most widely adopted
semisupervised and unsupervised machine learning methods for high-definition
image, video, and audio generation. In this work, we propose a new type of
architecture for quantum generative adversarial networks (entangling quantum
GAN, EQ-GAN) that overcomes some limitations of previously proposed quantum
GANs. Leveraging the entangling power of quantum circuits, EQ-GAN guarantees
the convergence to a Nash equilibrium under minimax optimization of the
discriminator and generator circuits by performing entangling operations
between both the generator output and true quantum data. We show that EQ-GAN
has additional robustness against coherent errors and demonstrate the
effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting
quantum processor. By adversarially learning efficient representations of
quantum states, we prepare an approximate quantum random access memory (QRAM)
and demonstrate its use in applications including the training of quantum
neural networks.
Related papers
- Variational Quantum Circuits Enhanced Generative Adversarial Network [5.209320054725053]
We propose a hybrid quantum-classical architecture for improving GAN (denoted as QC-GAN)
The QC-GAN consists of a quantum variational circuit together with a one-layer neural network, and the discriminator consists of a traditional neural network.
We have also demonstrated the superiority of QC-GAN over an alternative quantum GAN, namely pathGAN, which could hardly generate 16$times$16 or larger images.
arXiv Detail & Related papers (2024-02-02T03:59:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis
On NISQ Devices [2.4123561871510275]
We propose IQGAN, a framework for multiqubit image synthesis that can be efficiently implemented on Noisy Intermediate Quantum (NISQ) devices.
We then propose the IQGAN architecture featuring a trainable multiqubit quantum encoder that effectively embeds classical data into quantum states.
arXiv Detail & Related papers (2022-10-30T14:52:08Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Realizing a quantum generative adversarial network using a programmable
superconducting processor [17.3986929818418]
We report an experimental implementation of a quantum generative adversarial network (QGAN) using a programmable superconducting processor.
Our implementation is promising to scale up to noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2020-09-27T12:09:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.