Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale
- URL: http://arxiv.org/abs/2104.10523v1
- Date: Wed, 21 Apr 2021 13:26:42 GMT
- Title: Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale
- Authors: Thien Nguyen, Dmitry Lyakh, Eugene Dumitrescu, David Clark, Jeff
Larkin, Alexander McCaskey
- Abstract summary: We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
- Score: 57.84751206630535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The numerical simulation of quantum circuits is an indispensable tool for
development, verification and validation of hybrid quantum-classical algorithms
on near-term quantum co-processors. The emergence of exascale high-performance
computing (HPC) platforms presents new opportunities for pushing the boundaries
of quantum circuit simulation. We present a modernized version of the Tensor
Network Quantum Virtual Machine (TNQVM) which serves as a quantum circuit
simulation backend in the eXtreme-scale ACCelerator (XACC) framework. The new
version is based on the general purpose, scalable tensor network processing
library, ExaTN, and provides multiple configurable quantum circuit simulators
enabling either exact quantum circuit simulation via the full tensor network
contraction, or approximate quantum state representations via suitable tensor
factorizations. Upon necessity, stochastic noise modeling from real quantum
processors is incorporated into the simulations by modeling quantum channels
with Kraus tensors. By combining the portable XACC quantum programming frontend
and the scalable ExaTN numerical backend we introduce an end-to-end virtual
quantum development environment which can scale from laptops to future exascale
platforms. We report initial benchmarks of our framework which include a
demonstration of the distributed execution, incorporation of quantum
decoherence models, and simulation of the random quantum circuits used for the
certification of quantum supremacy on the Google Sycamore superconducting
architecture.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - QPanda: high-performance quantum computing framework for multiple
application scenarios [15.954489124674394]
This paper proposes QPanda, an application scenario-oriented quantum programming framework with high-performance simulation.
It implements high-performance simulation of quantum circuits, a configuration of the fusion processing backend of quantum computers and supercomputers, and compilation and optimization methods of quantum programs for NISQ machines.
arXiv Detail & Related papers (2022-12-29T07:38:50Z) - QuDiet: A Classical Simulation Platform for Qubit-Qudit Hybrid Quantum
Systems [7.416447177941264]
textbfQuDiet is a python-based higher-dimensional quantum computing simulator.
textbfQuDiet offers multi-valued logic operations by utilizing generalized quantum gates.
textbfQuDiet provides a full qubit-qudit hybrid quantum simulator package.
arXiv Detail & Related papers (2022-11-15T06:07:04Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.