Constrained dynamics of maximally entangled bipartite system
- URL: http://arxiv.org/abs/2105.00096v1
- Date: Fri, 30 Apr 2021 21:18:17 GMT
- Title: Constrained dynamics of maximally entangled bipartite system
- Authors: Asma Bashir, Muhammad Abdul Wasay
- Abstract summary: We show that when state is maximally entangled between two subsystems, the product of dispersion in the measurement reduces.
We also quantify the upper bound on the external field $vecB$ such that $vecBgeqvecB_upper$ implies no reduction in the product of dispersion pertaining to one subsystem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classical and quantum dynamics of two particles constrained on $S^1$ is
discussed via Dirac's approach. We show that when state is maximally entangled
between two subsystems, the product of dispersion in the measurement reduces.
We also quantify the upper bound on the external field $\vec{B}$ such that
$\vec{B}\geq\vec{B}_{upper}$ implies no reduction in the product of dispersion
pertaining to one subsystem. Further, we report on the cut-off value of the
external field $\vec{B}_{cutoff}$, above which the bipartite entanglement is
lost and there exists a direct relationship between uncertainty of the
composite system and the external field. We note that, in this framework it is
possible to tune the external field for entanglement/unentanglement of a
bipartite system. Finally, we show that the additional terms arising in the
quantum Hamiltonian, due to the requirement of Hermiticity of operators,
produce a shift in the energy of the system.
Related papers
- Weak coupling limit for quantum systems with unbounded weakly commuting system operators [50.24983453990065]
This work is devoted to a rigorous analysis of the weak coupling limit (WCL) for the reduced dynamics of an open infinite-dimensional quantum system interacting with electromagnetic field or a reservoir formed by Fermi or Bose particles.<n>We derive in the weak coupling limit the reservoir statistics, which is determined by whose terms in the multi-point correlation functions of the reservoir are non-zero in the WCL.<n>We prove that the resulting reduced system dynamics converges to unitary dynamics with a modified Hamiltonian which can be interpreted as a Lamb shift to the original Hamiltonian.
arXiv Detail & Related papers (2025-05-13T05:32:34Z) - Lévy Light Cones and Critical Causality in Fractional Multiscale Quantum Ising Models [0.5852077003870417]
We study causality and criticality in a one-dimensional fractional multiscale transverse-field Ising model.<n>These unique interactions can be implemented in current quantum information architectures.
arXiv Detail & Related papers (2025-05-08T21:00:47Z) - Superdiffusive transport in chaotic quantum systems with nodal interactions [1.7934794154114089]
We introduce a class of interacting fermionic quantum models in $d$ dimensions with nodal interactions that exhibit superdiffusive transport.
We establish non-perturbatively that the nodal structure of the interactions gives rise to long-lived quasiparticle excitations that result in a diverging diffusion constant.
arXiv Detail & Related papers (2025-01-14T19:00:04Z) - Hamiltonians for Quantum Systems with Contact Interactions [49.1574468325115]
We show that in the limit one obtains the one-body Hamiltonian for the light particle subject to $N$ (non-local) point interactions placed at fixed positions.
We will verify that such non-local point interactions do not exhibit the ultraviolet pathologies that are present in the case of standard local point interactions.
arXiv Detail & Related papers (2024-07-09T14:04:11Z) - Duality between open systems and closed bilayer systems, and thermofield double states as quantum many-body scars [49.1574468325115]
We find a duality between open many-body systems governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation.
Under this duality, the identity operator on the open system side maps to the thermofield double state.
We identify broad classes of many-body open systems with nontrivial explicit eigen operators $Q$ of the Lindbladian superoperator.
arXiv Detail & Related papers (2023-04-06T15:38:53Z) - Liouvillian gap and out-of-equilibrium dynamics of a sunburst Kitaev
ring: from local to uniform dissipation [0.0]
We consider an open quantum system composed of a $(1+1)$-dimensional Kitaev ring coupled with the environment via $n$ particle-loss dissipators in a itsunburst geometry.
We describe the out-of-equilibrium dynamics of the whole apparatus in terms of Lindblad master equations and focus on the scaling behavior of the Liovillian gap $Delta_lambda$ with the system size $L$.
arXiv Detail & Related papers (2023-03-07T19:55:47Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Detecting bulk and edge exceptional points in non-Hermitian systems
through generalized Petermann factors [7.371841894852217]
Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena.
We introduce an interesting quantity (denoted as $eta$) as a new variant of the Petermann factor to measure non-unitarity.
arXiv Detail & Related papers (2022-08-31T16:24:03Z) - Decoherence and energy flow in the sunburst quantum Ising model [0.0]
We study the post-quench unitary dynamics of a quantum sunburst spin model composed of a transverse-field quantum Ising ring.
We characterize the decoherence and the energy storage in the external qubits, which may be interpreted as a probing apparatus for the inner Ising ring.
arXiv Detail & Related papers (2022-05-02T20:55:55Z) - Beyond-mean-field effects in Rabi-coupled two-component Bose-Einstein
condensate [0.0]
We calculate and experimentally measure the beyond-mean-field (BMF) equation of state in a coherently-coupled two-component Bose-Einstein condensate (BEC)
We show that with increasing the Rabi-coupling frequency $Omega$, the BMF energy density crosses over from the nonanalytic Lee-Huang-Yang scaling $propto n5/2$ to an expansion in integer powers of density.
We experimentally evidence this two contributions, thanks to their different scaling with $Omega$, in the expansion of a Rabi-coupled two-component $39$K condensate in
arXiv Detail & Related papers (2021-05-25T07:46:47Z) - Scattering data and bound states of a squeezed double-layer structure [77.34726150561087]
A structure composed of two parallel homogeneous layers is studied in the limit as their widths $l_j$ and $l_j$, and the distance between them $r$ shrinks to zero simultaneously.
The existence of non-trivial bound states is proven in the squeezing limit, including the particular example of the squeezed potential in the form of the derivative of Dirac's delta function.
The scenario how a single bound state survives in the squeezed system from a finite number of bound states in the finite system is described in detail.
arXiv Detail & Related papers (2020-11-23T14:40:27Z) - Mapping the charge-dyon system into the position-dependent effective
mass background via Pauli equation [77.34726150561087]
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge.
arXiv Detail & Related papers (2020-11-01T14:38:34Z) - Hidden symmetry and (super)conformal mechanics in a monopole background [0.0]
We study classical and quantum hidden symmetries of a particle with electric charge $e$ in the background of a Dirac monopole of magnetic charge $g$ subjected to an additional central potential $V(r)=U(r) +(eg)2/2mr2$ with $U(r)=tfrac12momega2r2$.
By means of a non-unitary conformal bridge transformation, we establish a relation of the quantum states and of all symmetries of the system with those of the system without
arXiv Detail & Related papers (2020-02-11T12:14:38Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.