Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation
- URL: http://arxiv.org/abs/2105.00097v1
- Date: Fri, 30 Apr 2021 21:32:40 GMT
- Title: Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation
- Authors: Nikita Araslanov and Stefan Roth
- Abstract summary: We propose an approach to domain adaptation for semantic segmentation that is both practical and highly accurate.
We employ standard data augmentation techniques $-$ photometric noise, flipping and scaling $-$ and ensure consistency of the semantic predictions.
We achieve significant improvements of the state-of-the-art segmentation accuracy after adaptation, consistent both across different choices of the backbone architecture and adaptation scenarios.
- Score: 56.91850268635183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an approach to domain adaptation for semantic segmentation that is
both practical and highly accurate. In contrast to previous work, we abandon
the use of computationally involved adversarial objectives, network ensembles
and style transfer. Instead, we employ standard data augmentation techniques
$-$ photometric noise, flipping and scaling $-$ and ensure consistency of the
semantic predictions across these image transformations. We develop this
principle in a lightweight self-supervised framework trained on co-evolving
pseudo labels without the need for cumbersome extra training rounds. Simple in
training from a practitioner's standpoint, our approach is remarkably
effective. We achieve significant improvements of the state-of-the-art
segmentation accuracy after adaptation, consistent both across different
choices of the backbone architecture and adaptation scenarios.
Related papers
- Condition-Invariant Semantic Segmentation [77.10045325743644]
We implement Condition-Invariant Semantic (CISS) on the current state-of-the-art domain adaptation architecture.
Our method achieves the second-best performance on the normal-to-adverse Cityscapes$to$ACDC benchmark.
CISS is shown to generalize well to domains unseen during training, such as BDD100K-night and ACDC-night.
arXiv Detail & Related papers (2023-05-27T03:05:07Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
We present a novel approach to unsupervised learning for video object segmentation (VOS)
Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime.
Our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
arXiv Detail & Related papers (2021-11-11T15:15:11Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
Domain adaptation approaches have come into play to transfer knowledge acquired on a label-abundant source domain to a related label-scarce target domain.
We propose a novel performance metric to capture the relative efficacy of an adaptation strategy compared to supervised training.
arXiv Detail & Related papers (2021-08-06T09:43:07Z) - PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency
Training [4.336877104987131]
Unsupervised domain adaptation is a promising technique for semantic segmentation.
We present a novel framework for unsupervised domain adaptation based on the notion of target-domain consistency training.
Our approach is simpler, easier to implement, and more memory-efficient during training.
arXiv Detail & Related papers (2021-05-17T19:36:28Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
We leverage contrastive learning to bridge the domain gap by aligning the features of structurally similar label patches across domains.
Our approach consistently outperforms state-of-the-art unsupervised and semi-supervised methods on two challenging domain adaptive segmentation tasks.
arXiv Detail & Related papers (2021-04-22T13:39:12Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
arXiv Detail & Related papers (2021-04-06T16:07:22Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
We consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm.
To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization.
Our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch.
arXiv Detail & Related papers (2021-03-03T05:46:39Z) - Cross-modal Learning for Domain Adaptation in 3D Semantic Segmentation [11.895722159139108]
Domain adaptation is an important task to enable learning when labels are scarce.
We propose cross-modal learning, where we enforce consistency between the predictions of two modalities via mutual mimicking.
We constrain our network to make correct predictions on labeled data and consistent predictions across modalities on unlabeled target-domain data.
arXiv Detail & Related papers (2021-01-18T18:59:21Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
We propose to build the pixel-level cycle association between source and target pixel pairs.
Our method can be trained end-to-end in one stage and introduces no additional parameters.
arXiv Detail & Related papers (2020-10-31T00:11:36Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.