論文の概要: GistNet: a Geometric Structure Transfer Network for Long-Tailed
Recognition
- arxiv url: http://arxiv.org/abs/2105.00131v1
- Date: Sat, 1 May 2021 00:37:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-06 04:51:00.504484
- Title: GistNet: a Geometric Structure Transfer Network for Long-Tailed
Recognition
- Title(参考訳): gistnet:ロングテール認識のための幾何構造転送ネットワーク
- Authors: Bo Liu, Haoxiang Li, Hao Kang, Gang Hua, Nuno Vasconcelos
- Abstract要約: 長い尾の認識は、クラスごとのサンプル数が非常にアンバランスである問題です。
GistNetは、クラスジオメトリをエンコードするために分類パラメータのコンステレーションを使用して、この目標をサポートするように提案されている。
新しい学習アルゴリズムがGeometrIc Structure Transfer (GIST) に提案され、クラスバランスとランダムサンプリングを組み合わせた損失関数の組み合わせにより、一般的なクラスに過度に適合することは幾何パラメータに制限されるが、人気クラスから少数ショットクラスへのクラス幾何学の転送に利用される。
- 参考スコア(独自算出の注目度): 95.93760490301395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of long-tailed recognition, where the number of examples per
class is highly unbalanced, is considered. It is hypothesized that the well
known tendency of standard classifier training to overfit to popular classes
can be exploited for effective transfer learning. Rather than eliminating this
overfitting, e.g. by adopting popular class-balanced sampling methods, the
learning algorithm should instead leverage this overfitting to transfer
geometric information from popular to low-shot classes. A new classifier
architecture, GistNet, is proposed to support this goal, using constellations
of classifier parameters to encode the class geometry. A new learning algorithm
is then proposed for GeometrIc Structure Transfer (GIST), with resort to a
combination of loss functions that combine class-balanced and random sampling
to guarantee that, while overfitting to the popular classes is restricted to
geometric parameters, it is leveraged to transfer class geometry from popular
to few-shot classes. This enables better generalization for few-shot classes
without the need for the manual specification of class weights, or even the
explicit grouping of classes into different types. Experiments on two popular
long-tailed recognition datasets show that GistNet outperforms existing
solutions to this problem.
- Abstract(参考訳): クラスごとの例数が非常に不均衡なロングテール認識の問題点を考察する。
一般的なクラスに過度に適合する標準分類器訓練の傾向は、効果的な転帰学習に活用できると仮定されている。
この過度な適合をなくすのではなく、例えば、
一般的なクラスバランスのサンプリング手法を採用することで、学習アルゴリズムはこの過剰フィッティングを利用して、人気のあるクラスから低ショットクラスへ幾何学的情報を転送する。
新しい分類器アーキテクチャgistnetは、クラス幾何をエンコードするために分類器パラメータのコンステレーションを使用して、この目標をサポートするために提案されている。
新しい学習アルゴリズムがGeometrIc Structure Transfer (GIST) に提案され、クラスバランスとランダムサンプリングを組み合わせた損失関数の組み合わせにより、一般的なクラスに過度に適合することは幾何パラメータに制限されるが、人気クラスから少数ショットクラスへのクラス幾何学の転送に利用される。
これにより、クラス重みの手動仕様や、クラスを異なる型に明示的なグループ化する必要がなくなる。
2つの人気のある長い尾の認識データセットの実験は、GistNetがこの問題に対する既存のソリューションより優れていることを示している。
関連論文リスト
- Generalized Few-Shot Point Cloud Segmentation Via Geometric Words [54.32239996417363]
ショットポイントクラウドセグメンテーションアルゴリズムは、ベースクラスのセグメンテーション精度を犠牲にして、新しいクラスに適応するように学習する。
一般化された数ショット点雲のセグメンテーションというより実践的なパラダイムの最初の試みを示す。
基本クラスと新規クラス間で共有される幾何学的要素を表す幾何学的単語を提案し,それらを新しい幾何学的意味表現に組み込む。
論文 参考訳(メタデータ) (2023-09-20T11:24:33Z) - Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class
Incremental Learning [120.53458753007851]
FSCIL(Few-shot class-incremental Learning)は、新しいセッションにおいて、新しいクラスごとにいくつかのトレーニングサンプルしかアクセスできないため、難しい問題である。
我々は最近発見された神経崩壊現象にインスパイアされたFSCILのこの不整合ジレンマに対処する。
我々は、FSCILのための神経崩壊誘発フレームワークを提案する。MiniImageNet、CUB-200、CIFAR-100データセットの実験により、提案したフレームワークが最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-06T18:39:40Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
本研究では,新しいクラスに移動可能な分類の表現を基礎モデルで学習する能力について検討する。
クラス-機能-変数の崩壊の場合,新しいクラスで学習した特徴マップのわずかな誤差が小さいことを示す。
論文 参考訳(メタデータ) (2022-12-23T18:46:05Z) - Evidential Deep Learning for Class-Incremental Semantic Segmentation [15.563703446465823]
クラス増分学習(Class-Incremental Learning)は、以前トレーニングされたニューラルネットワークを新しいクラスに拡張することを目的とした機械学習の課題である。
本稿では、将来的な非相関クラスの特徴クラスタリングを回避しつつ、ラベルのないクラスをモデル化する方法の問題に対処する。
提案手法は,この問題をディリクレ分布の期待値と推定の不確実性に対応する未知のクラス(背景)確率で計算した,別のフォアグラウンドクラス確率に分解する。
論文 参考訳(メタデータ) (2022-12-06T10:13:30Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Multi-Granularity Regularized Re-Balancing for Class Incremental
Learning [32.52884416761171]
ディープラーニングモデルは、新しいタスクを学ぶときに破滅的な忘れに苦しむ。
古いクラスと新しいクラスのデータの不均衡は、モデルのパフォーマンスが低下する鍵となる問題である。
この問題を解決するために,仮定に依存しないマルチグラニュラリティ正規化再バランシング法を提案する。
論文 参考訳(メタデータ) (2022-06-30T11:04:51Z) - Do Deep Networks Transfer Invariances Across Classes? [123.84237389985236]
ニュアンス変換を学習するための生成的アプローチが、クラス間での不変性の伝達にどのように役立つかを示す。
この結果から,不均衡分布や細長い分布に対して分類器が不規則に一般化する理由が示唆された。
論文 参考訳(メタデータ) (2022-03-18T04:38:18Z) - Memory-Free Generative Replay For Class-Incremental Learning [32.39857105540859]
本研究では,メモリフリーな生成再生戦略を提案し,クラス特性の微粒化を抑える。
本手法は,従来のクラスを識別しやすくするために有効であることが証明された事前正規化に基づく手法によって最もよく補完される。
論文 参考訳(メタデータ) (2021-09-01T12:19:54Z) - Class-incremental Learning with Pre-allocated Fixed Classifiers [20.74548175713497]
クラス増分学習では、学習エージェントは、前のクラスを忘れずに新しいクラスを学ぶことを目標として、データのストリームに直面します。
本稿では,複数の事前配置された出力ノードが学習フェーズの開始時から,その分類損失に正しく対応できる新しい固定分類器を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:40:28Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。