Deep Insights of Deepfake Technology : A Review
- URL: http://arxiv.org/abs/2105.00192v1
- Date: Sat, 1 May 2021 08:25:43 GMT
- Title: Deep Insights of Deepfake Technology : A Review
- Authors: Bahar Uddin Mahmud, Afsana Sharmin
- Abstract summary: New emerging techniques has introduced that anyone can make highly realistic but fake videos, images even can manipulates the voices.
Deepfake technology is widely known as Deepfake Technology.
Our study revealed that although Deepfake is a threat to our societies, proper measures and strict regulations could prevent this.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Under the aegis of computer vision and deep learning technology, a new
emerging techniques has introduced that anyone can make highly realistic but
fake videos, images even can manipulates the voices. This technology is widely
known as Deepfake Technology. Although it seems interesting techniques to make
fake videos or image of something or some individuals but it could spread as
misinformation via internet. Deepfake contents could be dangerous for
individuals as well as for our communities, organizations, countries religions
etc. As Deepfake content creation involve a high level expertise with
combination of several algorithms of deep learning, it seems almost real and
genuine and difficult to differentiate. In this paper, a wide range of articles
have been examined to understand Deepfake technology more extensively. We have
examined several articles to find some insights such as what is Deepfake, who
are responsible for this, is there any benefits of Deepfake and what are the
challenges of this technology. We have also examined several creation and
detection techniques. Our study revealed that although Deepfake is a threat to
our societies, proper measures and strict regulations could prevent this.
Related papers
- Deepfake Media Generation and Detection in the Generative AI Era: A Survey and Outlook [101.30779332427217]
We survey deepfake generation and detection techniques, including the most recent developments in the field.
We identify various kinds of deepfakes, according to the procedure used to alter or generate the fake content.
We develop a novel multimodal benchmark to evaluate deepfake detectors on out-of-distribution content.
arXiv Detail & Related papers (2024-11-29T08:29:25Z) - Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception.
Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation.
This paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
arXiv Detail & Related papers (2024-11-12T09:02:11Z) - Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Unmasking Illusions: Understanding Human Perception of Audiovisual Deepfakes [49.81915942821647]
This paper aims to evaluate the human ability to discern deepfake videos through a subjective study.
We present our findings by comparing human observers to five state-ofthe-art audiovisual deepfake detection models.
We found that all AI models performed better than humans when evaluated on the same 40 videos.
arXiv Detail & Related papers (2024-05-07T07:57:15Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
Deepfakes, also known as deep learning-based fake videos, have become a major concern in recent years.
These deepfake videos can be used for malicious purposes such as spreading misinformation, impersonating individuals, and creating fake news.
Deepfake detection technologies use various approaches such as facial recognition, motion analysis, and audio-visual synchronization.
arXiv Detail & Related papers (2023-09-06T18:17:47Z) - Hybrid Deepfake Detection Utilizing MLP and LSTM [0.0]
A deepfake is an invention that has come with the latest technological advancements.
In this paper, we propose a new deepfake detection schema utilizing two deep learning algorithms.
We evaluate our model using a dataset named 140k Real and Fake Faces to detect images altered by a deepfake with accuracies achieved as high as 74.7%.
arXiv Detail & Related papers (2023-04-21T16:38:26Z) - Deepfake Detection Analyzing Hybrid Dataset Utilizing CNN and SVM [0.0]
We propose a new deepfake detection schema using two popular machine learning algorithms.
Deepfakes have recently risen with the rise of technological advancement and have allowed nefarious online users to replace one face with a computer generated face of anyone they would like.
arXiv Detail & Related papers (2023-01-27T01:00:39Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhy is a novel Deepfake Phylogeny dataset which consists of 5040 deepfake videos generated using three different generation techniques.
We present the benchmark on DeePhy dataset using six deepfake detection algorithms.
arXiv Detail & Related papers (2022-09-19T15:30:33Z) - Using Deep Learning to Detecting Deepfakes [0.0]
Deepfakes are videos or images that replace one persons face with another computer-generated face, often a more recognizable person in society.
To combat this online threat, researchers have developed models that are designed to detect deepfakes.
This study looks at various deepfake detection models that use deep learning algorithms to combat this looming threat.
arXiv Detail & Related papers (2022-07-27T17:05:16Z) - Deepfake Videos in the Wild: Analysis and Detection [6.246677573849458]
We present the largest dataset of deepfake videos in the wild, containing 1,869 videos from YouTube and Bilibili, and extract over 4.8M frames of content.
Second, we present a comprehensive analysis of the growth patterns, popularity, creators, manipulation strategies, and production methods of deepfake content in the real-world.
Third, we systematically evaluate existing defenses using our new dataset, and observe that they are not ready for deployment in the real-world.
arXiv Detail & Related papers (2021-03-07T04:40:15Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.