Deepfake Media Forensics: State of the Art and Challenges Ahead
- URL: http://arxiv.org/abs/2408.00388v2
- Date: Tue, 13 Aug 2024 15:10:20 GMT
- Title: Deepfake Media Forensics: State of the Art and Challenges Ahead
- Authors: Irene Amerini, Mauro Barni, Sebastiano Battiato, Paolo Bestagini, Giulia Boato, Tania Sari Bonaventura, Vittoria Bruni, Roberto Caldelli, Francesco De Natale, Rocco De Nicola, Luca Guarnera, Sara Mandelli, Gian Luca Marcialis, Marco Micheletto, Andrea Montibeller, Giulia Orru', Alessandro Ortis, Pericle Perazzo, Giovanni Puglisi, Davide Salvi, Stefano Tubaro, Claudia Melis Tonti, Massimo Villari, Domenico Vitulano,
- Abstract summary: AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
- Score: 51.33414186878676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-generated synthetic media, also called Deepfakes, have significantly influenced so many domains, from entertainment to cybersecurity. Generative Adversarial Networks (GANs) and Diffusion Models (DMs) are the main frameworks used to create Deepfakes, producing highly realistic yet fabricated content. While these technologies open up new creative possibilities, they also bring substantial ethical and security risks due to their potential misuse. The rise of such advanced media has led to the development of a cognitive bias known as Impostor Bias, where individuals doubt the authenticity of multimedia due to the awareness of AI's capabilities. As a result, Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques, especially Convolutional Neural Networks (CNNs). Research in forensic Deepfake technology encompasses five main areas: detection, attribution and recognition, passive authentication, detection in realistic scenarios, and active authentication. This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
Related papers
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception.
Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation.
This paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
arXiv Detail & Related papers (2024-11-12T09:02:11Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
Deep learning has enabled the creation or manipulation of high-fidelity facial images and videos.
This technology, also known as deepfake, has achieved dramatic progress and become increasingly popular in social media.
To diminish the risks of deepfake, it is desirable to develop powerful forgery detection methods.
arXiv Detail & Related papers (2024-09-22T01:42:01Z) - Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
As AI-generated media become more realistic, the risk of misuse to spread misinformation and commit identity fraud increases.
This work traces the evolution from traditional single-modality methods to sophisticated multi-modal approaches that handle audio-visual and text-visual scenarios.
To our knowledge, this is the first survey of its kind.
arXiv Detail & Related papers (2024-06-11T05:48:04Z) - Explainable Deepfake Video Detection using Convolutional Neural Network and CapsuleNet [0.0]
Deepfake technology seamlessly inserts individuals into digital media, irrespective of their actual participation.
The primary deepfake creation algorithm, GAN, employs machine learning to craft realistic images or videos.
We aim to elucidate our model's decision-making process through Explainable AI, fostering transparent human-AI relationships.
arXiv Detail & Related papers (2024-04-19T12:21:27Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Mitigating Adversarial Attacks in Deepfake Detection: An Exploration of
Perturbation and AI Techniques [1.0718756132502771]
adversarial examples are subtle perturbations artfully injected into clean images or videos.
Deepfakes have emerged as a potent tool to manipulate public opinion and tarnish the reputations of public figures.
This article delves into the multifaceted world of adversarial examples, elucidating the underlying principles behind their capacity to deceive deep learning algorithms.
arXiv Detail & Related papers (2023-02-22T23:48:19Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.