論文の概要: COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction
- arxiv url: http://arxiv.org/abs/2105.00620v1
- Date: Mon, 3 May 2021 04:00:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 22:24:33.371688
- Title: COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction
- Title(参考訳): COUnty aggregation mixup AuGmEntation (COURAGE) COVID-19予測
- Authors: Siawpeng Er, Shihao Yang, Tuo Zhao
- Abstract要約: 本稿では,米国各郡における2週間の新型コロナウイルス関連死亡の短期予測を行うCOURAGEという手法を提案する。
本モデルでは, 新型コロナウイルス関連症例, 死亡状況, 地域移動傾向, 人口統計情報の公開情報を完全に活用し, 対応する郡レベルの予測の集約として, 州レベルの予測を作成できる。
- 参考スコア(独自算出の注目度): 29.919578191688274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global spread of COVID-19, the disease caused by the novel coronavirus
SARS-CoV-2, has cast a significant threat to mankind. As the COVID-19 situation
continues to evolve, predicting localized disease severity is crucial for
advanced resource allocation. This paper proposes a method named COURAGE
(COUnty aggRegation mixup AuGmEntation) to generate a short-term prediction of
2-week-ahead COVID-19 related deaths for each county in the United States,
leveraging modern deep learning techniques. Specifically, our method adopts a
self-attention model from Natural Language Processing, known as the transformer
model, to capture both short-term and long-term dependencies within the time
series while enjoying computational efficiency. Our model fully utilizes
publicly available information of COVID-19 related confirmed cases, deaths,
community mobility trends and demographic information, and can produce
state-level prediction as an aggregation of the corresponding county-level
predictions. Our numerical experiments demonstrate that our model achieves the
state-of-the-art performance among the publicly available benchmark models.
- Abstract(参考訳): 新型コロナウイルス感染症(SARS-CoV-2)の世界的な感染拡大は、人類にとって大きな脅威となっている。
新型コロナウイルス(COVID-19)の状況が発展を続ける中、局部的な病気の重症度を予測することは、高度な資源配分に不可欠である。
本稿では,米国各郡における2週間の新型コロナウイルス関連死亡の短期予測を,最新の深層学習技術を活用したCOURAGE(COUnty aggregation mixup AuGmEntation)という手法を提案する。
具体的には,トランスフォーマーモデルと呼ばれる自然言語処理の自己注意モデルを用いて,時系列内の短期的および長期的依存関係を抽出し,計算効率を享受する。
本モデルでは, 新型コロナウイルス関連症例, 死亡状況, 地域移動傾向, 人口統計情報の公開情報を完全に活用し, 対応する郡レベルの予測の集約として, 州レベルの予測を作成できる。
数値実験により,本モデルが利用可能なベンチマークモデル間の最先端性能を実現することを示す。
関連論文リスト
- COVID-19 Hospitalizations Forecasts Using Internet Search Data [4.748730334762718]
先程提案したインフルエンザ追跡モデルであるARGOを拡張し,今後2週間の全国および州レベルの新規入院を予測した。
本手法は,新型コロナウイルスの予測ハブから収集した最良の代替モデルに対して,平均15%のエラー削減を実現する。
論文 参考訳(メタデータ) (2022-02-03T21:56:20Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
本稿では,米国内の郡レベルでの新型コロナウイルスの流行を予測するための,長期記憶アーキテクチャに基づくデータ駆動型モデルであるCOVID-LSTMを提案する。
われわれは、時間的入力として毎週の新規症例数と、Facebookのハンドエンジニアリングによる空間的特徴を用いて、疾患の時間的および空間的拡散を捉えている。
4週間の予測で、私たちのモデルは平均50のケースで、COVIDhubアンサンブルよりも正確です。
論文 参考訳(メタデータ) (2021-09-24T17:40:08Z) - Understanding the Spread of COVID-19 Epidemic: A Spatio-Temporal Point
Process View [44.67854875502783]
1月21日以降、米国では100万人以上が新型コロナウイルスの感染者を確認している。
この伝染性呼吸器疾患は、米国の3000以上の郡と50の州に急速に広がった。
本疾患の複雑な時空干渉伝播を理解するためには,正確な予測や知的外的介入が可能であることが不可欠である。
論文 参考訳(メタデータ) (2021-06-24T15:26:46Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
ポルトガルは世界最大の発生率を持つ国であり、人口10万人当たりの14日間の発生率が1000を超える。
その重要性にもかかわらず、covid-19の地理空間的進化の正確な予測は依然として課題である。
論文 参考訳(メタデータ) (2021-05-06T15:24:00Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
COVID-19予測のためのディープラーニングモデルの設計と分析を行う。
新型コロナウイルス(COVID-19)や死亡例数などの複数のソースが、より良い予測のためにデータとテストデータを数えている。
時間的予測のためのクラスタリングに基づくトレーニングを提案する。
論文 参考訳(メタデータ) (2020-10-27T17:52:02Z) - Semi-supervised Neural Networks solve an inverse problem for modeling
Covid-19 spread [61.9008166652035]
半教師付きニューラルネットワークを用いた新型コロナウイルスの感染拡大について検討した。
我々は、人口の受動的一部がウイルスの動態から分離されていると仮定する。
論文 参考訳(メタデータ) (2020-10-10T19:33:53Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2は世界的な普及を続けており、パンデミックとなっている。
新型コロナウイルスの感染拡大を予測するために、機械学習技術を開発する必要がある。
論文 参考訳(メタデータ) (2020-07-29T10:14:11Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
新型コロナウイルス(COVID-19)の世界的な感染拡大を受け、多くの国が前例のないロックダウン措置を講じている。
さまざまなロックダウンポリシーシナリオの下で、新型コロナウイルスの死亡率を予測するデータ駆動モデルが不可欠だ。
本稿では,グローバルな状況下での新型コロナウイルスロックダウンポリシーの効果を予測するためのベイズモデルを開発する。
論文 参考訳(メタデータ) (2020-05-13T18:21:50Z) - A machine learning methodology for real-time forecasting of the
2019-2020 COVID-19 outbreak using Internet searches, news alerts, and
estimates from mechanistic models [53.900779250589814]
提案手法は,2日前の安定かつ正確な予測を行うことができる。
我々のモデルでは,中国32州中27州において,ベースラインモデルよりも予測力が優れています。
論文 参考訳(メタデータ) (2020-04-08T14:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。