Embedded training of neural-network sub-grid-scale turbulence models
- URL: http://arxiv.org/abs/2105.01030v1
- Date: Mon, 3 May 2021 17:28:39 GMT
- Title: Embedded training of neural-network sub-grid-scale turbulence models
- Authors: Jonathan F. MacArt, Justin Sirignano, Jonathan B. Freund
- Abstract summary: The weights of a deep neural network model are optimized in conjunction with the governing flow equations to provide a model for sub-grid-scale stresses.
The training is by a gradient descent method, which uses the adjoint Navier-Stokes equations to provide the end-to-end sensitivities of the model weights to the velocity fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The weights of a deep neural network model are optimized in conjunction with
the governing flow equations to provide a model for sub-grid-scale stresses in
a temporally developing plane turbulent jet at Reynolds number $Re_0=6\,000$.
The objective function for training is first based on the instantaneous
filtered velocity fields from a corresponding direct numerical simulation, and
the training is by a stochastic gradient descent method, which uses the adjoint
Navier--Stokes equations to provide the end-to-end sensitivities of the model
weights to the velocity fields. In-sample and out-of-sample testing on multiple
dual-jet configurations show that its required mesh density in each coordinate
direction for prediction of mean flow, Reynolds stresses, and spectra is half
that needed by the dynamic Smagorinsky model for comparable accuracy. The same
neural-network model trained directly to match filtered sub-grid-scale stresses
-- without the constraint of being embedded within the flow equations during
the training -- fails to provide a qualitatively correct prediction. The
coupled formulation is generalized to train based only on mean-flow and
Reynolds stresses, which are more readily available in experiments. The
mean-flow training provides a robust model, which is important, though a
somewhat less accurate prediction for the same coarse meshes, as might be
anticipated due to the reduced information available for training in this case.
The anticipated advantage of the formulation is that the inclusion of resolved
physics in the training increases its capacity to extrapolate. This is assessed
for the case of passive scalar transport, for which it outperforms established
models due to improved mixing predictions.
Related papers
- Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - A Denoising Diffusion Model for Fluid Field Prediction [0.0]
We propose a novel denoising diffusion generative model for predicting nonlinear fluid fields named FluidDiff.
By performing a diffusion process, the model is able to learn a complex representation of the high-dimensional dynamic system.
Langevin sampling is used to generate predictions for the flow state under specified initial conditions.
arXiv Detail & Related papers (2023-01-27T11:30:40Z) - Deep Learning to advance the Eigenspace Perturbation Method for
Turbulence Model Uncertainty Quantification [0.0]
We outline a machine learning approach to aid the use of the Eigenspace Perturbation Method to predict the uncertainty in the turbulence model prediction.
We use a trained neural network to predict the discrepancy in the shape of the RANS predicted Reynolds stress ellipsoid.
arXiv Detail & Related papers (2022-02-11T08:06:52Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
We use a data-driven approach to model a three-dimensional turbulent flow using cutting-edge Deep Learning techniques.
The accuracy of the model is assessed using statistical and physics-based metrics.
arXiv Detail & Related papers (2021-12-07T03:33:39Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.