Deep Learning to advance the Eigenspace Perturbation Method for
Turbulence Model Uncertainty Quantification
- URL: http://arxiv.org/abs/2202.12378v1
- Date: Fri, 11 Feb 2022 08:06:52 GMT
- Title: Deep Learning to advance the Eigenspace Perturbation Method for
Turbulence Model Uncertainty Quantification
- Authors: Khashayar Nobarani, Seyed Esmaeil Razavi
- Abstract summary: We outline a machine learning approach to aid the use of the Eigenspace Perturbation Method to predict the uncertainty in the turbulence model prediction.
We use a trained neural network to predict the discrepancy in the shape of the RANS predicted Reynolds stress ellipsoid.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Reynolds Averaged Navier Stokes (RANS) models are the most common form of
model in turbulence simulations. They are used to calculate Reynolds stress
tensor and give robust results for engineering flows. But RANS model
predictions have large error and uncertainty. In past, there has been some work
towards using data-driven methods to increase their accuracy. In this work we
outline a machine learning approach to aid the use of the Eigenspace
Perturbation Method to predict the uncertainty in the turbulence model
prediction. We use a trained neural network to predict the discrepancy in the
shape of the RANS predicted Reynolds stress ellipsoid. We apply the model to a
number of turbulent flows and demonstrate how the approach correctly identifies
the regions in which modeling errors occur when compared to direct numerical
simulation (DNS), large eddy simulation (LES) or experimental results from
previous works.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
We employ Bayesian neural networks to capture uncertainties in a reacting flow model.
We demonstrate that BNN models can provide unique insights about the structure of uncertainty of the data-driven closure models.
The efficacy of the model is demonstrated by a priori evaluation on a dataset consisting of a variety of flame conditions and fuels.
arXiv Detail & Related papers (2024-02-28T22:19:55Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
We make a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simulations.
Our results show DDPMs can successfully capture the whole distribution of solutions and, as a consequence, accurately estimate the uncertainty of the simulations.
We also evaluate an emerging generative modeling variant, flow matching, in comparison to regular diffusion models.
arXiv Detail & Related papers (2023-12-08T19:04:17Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Deep Learning Closure Models for Large-Eddy Simulation of Flows around
Bluff Bodies [0.0]
deep learning model for large-eddy simulation (LES) is developed and evaluated for incompressible flows around a rectangular cylinder at moderate Reynolds numbers.
DL-LES model is trained using adjoint PDE optimization methods to match, as closely as possible, direct numerical simulation (DNS) data.
We study the accuracy of the DL-LES model for predicting the drag coefficient, mean flow, and Reynolds stress.
arXiv Detail & Related papers (2022-08-06T11:25:50Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Embedded training of neural-network sub-grid-scale turbulence models [0.0]
The weights of a deep neural network model are optimized in conjunction with the governing flow equations to provide a model for sub-grid-scale stresses.
The training is by a gradient descent method, which uses the adjoint Navier-Stokes equations to provide the end-to-end sensitivities of the model weights to the velocity fields.
arXiv Detail & Related papers (2021-05-03T17:28:39Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
We introduce multi-agent reinforcement learning as an automated discovery tool of turbulence models.
We demonstrate the potential of this approach on Large Eddy Simulations of homogeneous and isotropic turbulence.
arXiv Detail & Related papers (2020-05-18T18:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.