論文の概要: Algorithms are not neutral: Bias in collaborative filtering
- arxiv url: http://arxiv.org/abs/2105.01031v1
- Date: Mon, 3 May 2021 17:28:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 13:39:08.627598
- Title: Algorithms are not neutral: Bias in collaborative filtering
- Title(参考訳): アルゴリズムは中立ではない:協調フィルタリングのバイアス
- Authors: Catherine Stinson
- Abstract要約: アルゴリズムバイアスの議論は、データまたはアルゴリズムを構築している人々が偏っている例に焦点を当てる傾向がある。
これは、人気に悩まされ、バイアスを均質化することで知られる協調フィルタリングの例で示される。
人気と均質化バイアスは、すでに限界を更に限界化させる効果があります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Discussions of algorithmic bias tend to focus on examples where either the
data or the people building the algorithms are biased. This gives the
impression that clean data and good intentions could eliminate bias. The
neutrality of the algorithms themselves is defended by prominent Artificial
Intelligence researchers. However, algorithms are not neutral. In addition to
biased data and biased algorithm makers, AI algorithms themselves can be
biased. This is illustrated with the example of collaborative filtering, which
is known to suffer from popularity, and homogenizing biases. Iterative
information filtering algorithms in general create a selection bias in the
course of learning from user responses to documents that the algorithm
recommended. These are not merely biases in the statistical sense; these
statistical biases can cause discriminatory outcomes. Data points on the
margins of distributions of human data tend to correspond to marginalized
people. Popularity and homogenizing biases have the effect of further
marginalizing the already marginal. This source of bias warrants serious
attention given the ubiquity of algorithmic decision-making.
- Abstract(参考訳): アルゴリズムバイアスの議論は、データまたはアルゴリズムを構築している人々が偏っている例に焦点を当てる傾向がある。
これにより、クリーンなデータと善意がバイアスを排除できるという印象を与える。
アルゴリズム自体の中立性は、著名な人工知能研究者によって守られている。
しかし、アルゴリズムは中立ではない。
バイアス付きデータとバイアス付きアルゴリズムメーカに加えて、AIアルゴリズム自体にもバイアスがかかる。
これは、人気に悩まされ、バイアスを均質化することで知られる協調フィルタリングの例で示される。
反復的情報フィルタリングアルゴリズムは一般に、アルゴリズムが推奨する文書に対するユーザの反応から学習する過程で選択バイアスを生成する。
これらの統計バイアスは、単に統計的な意味での偏見ではない。
人間のデータの分布のマージンに関するデータは、マージン化された人々に対応する傾向にある。
人気度と均質化バイアスは、既に限界に達している範囲をさらに狭める効果がある。
この偏りの源は、アルゴリズムによる意思決定の普遍性を考えると、深刻な注意を喚起する。
関連論文リスト
- Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors [28.869581543676947]
unsupervised outlier detection (OD) は、金融、セキュリティ等に多くの応用がある。
この研究は、データ中心の異なる要因の下で検出モデルを監査することで、ODの不公平な源泉に光を当てることを目的としている。
この研究に基づくODアルゴリズムは、すべて公正な落とし穴を示すが、どの種類のデータバイアスがより影響を受けやすいかは異なる。
論文 参考訳(メタデータ) (2024-08-24T20:35:32Z) - Mitigating Algorithmic Bias on Facial Expression Recognition [0.0]
バイアス付きデータセットはユビキタスであり、機械学習の課題を提示している。
偏りのあるデータセットの問題は、少数民族グループを扱う際に特に敏感である。
本研究は, 表情認識実験による偏差変化型オートエンコーダを用いて, 偏差を緩和する方法の1つを探る。
論文 参考訳(メタデータ) (2023-12-23T17:41:30Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
アンバイアスド・ラーニング・トゥ・ランク(ULTR)アルゴリズムは、バイアスド・クリックデータを用いたアンバイアスド・ランキングモデルを学ぶために提案される。
本稿では,BALというアルゴリズムをランク付けするバイアス非依存学習を提案する。
実世界のデータセットによる実験結果から,BALの有効性が検証された。
論文 参考訳(メタデータ) (2022-10-19T16:53:08Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Choosing an algorithmic fairness metric for an online marketplace:
Detecting and quantifying algorithmic bias on LinkedIn [0.21756081703275995]
等資格候補に対する等機会の公平性の概念から、アルゴリズム的公正度計量を導出する。
提案手法は、LinkedInが使用している2つのアルゴリズムの性別に関するアルゴリズムバイアスを計測し、定量化する。
論文 参考訳(メタデータ) (2022-02-15T10:33:30Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Towards Measuring Bias in Image Classification [61.802949761385]
畳み込みニューラルネットワーク(CNN)は、主要なコンピュータビジョンタスクの最先端技術となっている。
しかし、複雑な構造のため、その決定は産業世界の何らかの文脈での使用を制限するかを理解することは困難である。
帰属マップによるデータのバイアスを明らかにするための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-01T10:50:39Z) - Towards causal benchmarking of bias in face analysis algorithms [54.19499274513654]
顔分析アルゴリズムのアルゴリズムバイアスを測定する実験手法を開発した。
提案手法は,一致したサンプル画像の合成トランスクター'を生成することに基づく。
性別分類アルゴリズムの偏見を従来の観察法を用いて分析することにより,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-07-13T17:10:34Z) - Underestimation Bias and Underfitting in Machine Learning [2.639737913330821]
機械学習におけるアルゴリズムバイアスと呼ばれるものは、トレーニングデータの歴史的なバイアスによるものである。
時には、アルゴリズム自体によってバイアスがもたらされる(あるいは少なくとも悪化する)ことがある。
本稿では,分類アルゴリズムのバイアスに寄与する要因を理解するための初期研究について報告する。
論文 参考訳(メタデータ) (2020-05-18T20:01:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。