Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning
- URL: http://arxiv.org/abs/2105.01311v3
- Date: Fri, 17 Nov 2023 23:37:23 GMT
- Title: Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning
- Authors: Xiangyu Peng, Siyan Li, Sarah Wiegreffe, Mark Riedl
- Abstract summary: We introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process.
We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings.
- Score: 12.264880519328353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based language model approaches to automated story generation
currently provide state-of-the-art results. However, they still suffer from
plot incoherence when generating narratives over time, and critically lack
basic commonsense reasoning. Furthermore, existing methods generally focus only
on single-character stories, or fail to track characters at all. To improve the
coherence of generated narratives and to expand the scope of character-centric
narrative generation, we introduce Commonsense-inference Augmented neural
StoryTelling (CAST), a framework for introducing commonsense reasoning into the
generation process with the option to model the interaction between multiple
characters. We find that our CAST method produces significantly more coherent,
on-topic, enjoyable and fluent stories than existing models in both the
single-character and two-character settings in three storytelling domains.
Related papers
- Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Story3D-Agent: Exploring 3D Storytelling Visualization with Large Language Models [57.30913211264333]
We present Story3D-Agent, a pioneering approach that transforms provided narratives into 3D-rendered visualizations.
By integrating procedural modeling, our approach enables precise control over multi-character actions and motions, as well as diverse decorative elements.
We have thoroughly evaluated our Story3D-Agent to validate its effectiveness, offering a basic framework to advance 3D story representation.
arXiv Detail & Related papers (2024-08-21T17:43:15Z) - Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models [79.21968152209193]
We introduce the NewEpisode benchmark to evaluate generative models' adaptability in generating new stories with fresh characters.
We propose EpicEvo, a method that customizes a diffusion-based visual story generation model with a single story featuring the new characters seamlessly integrating them into established character dynamics.
arXiv Detail & Related papers (2024-05-20T07:54:03Z) - Returning to the Start: Generating Narratives with Related Endpoints [27.61802620856587]
We propose RENarGen, a story-generation paradigm that generates narratives by ensuring the first and last sentences are related and then infilling the middle sentences.
Our contributions include an initial exploration of how various methods of bookending from Narratology affect language modeling for stories.
arXiv Detail & Related papers (2024-03-31T23:48:50Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - Guiding Neural Story Generation with Reader Models [5.935317028008691]
We introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress.
Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic.
arXiv Detail & Related papers (2021-12-16T03:44:01Z) - Goal-Directed Story Generation: Augmenting Generative Language Models
with Reinforcement Learning [7.514717103747824]
We present two automated techniques grounded in deep reinforcement learning and reward shaping to control the plot of computer-generated stories.
The first utilizes proximal policy optimization to fine-tune an existing transformer-based language model to generate text continuations but also be goal-seeking.
The second extracts a knowledge graph from the unfolding story, which is used by a policy network with graph attention to select a candidate continuation generated by a language model.
arXiv Detail & Related papers (2021-12-16T03:34:14Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states.
In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative.
arXiv Detail & Related papers (2020-04-30T17:16:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.