Goal-Directed Story Generation: Augmenting Generative Language Models
with Reinforcement Learning
- URL: http://arxiv.org/abs/2112.08593v1
- Date: Thu, 16 Dec 2021 03:34:14 GMT
- Title: Goal-Directed Story Generation: Augmenting Generative Language Models
with Reinforcement Learning
- Authors: Amal Alabdulkarim, Winston Li, Lara J. Martin, Mark O. Riedl
- Abstract summary: We present two automated techniques grounded in deep reinforcement learning and reward shaping to control the plot of computer-generated stories.
The first utilizes proximal policy optimization to fine-tune an existing transformer-based language model to generate text continuations but also be goal-seeking.
The second extracts a knowledge graph from the unfolding story, which is used by a policy network with graph attention to select a candidate continuation generated by a language model.
- Score: 7.514717103747824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large pre-trained generative language models has provided a
common framework for AI story generation via sampling the model to create
sequences that continue the story. However, sampling alone is insufficient for
story generation. In particular, it is hard to direct a language model to
create stories to reach a specific goal event. We present two automated
techniques grounded in deep reinforcement learning and reward shaping to
control the plot of computer-generated stories. The first utilizes proximal
policy optimization to fine-tune an existing transformer-based language model
to generate text continuations but also be goal-seeking. The second extracts a
knowledge graph from the unfolding story, which is used by a policy network
with graph attention to select a candidate continuation generated by a language
model. We report on automated metrics pertaining to how often stories achieve a
given goal event as well as human participant rankings of coherence and overall
story quality compared to baselines and ablations.
Related papers
- TARN-VIST: Topic Aware Reinforcement Network for Visual Storytelling [14.15543866199545]
As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically.
We propose a novel method, Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST)
In particular, we pre-extracted the topic information of stories from both visual and linguistic perspectives.
arXiv Detail & Related papers (2024-03-18T08:01:23Z) - Visual Storytelling with Question-Answer Plans [70.89011289754863]
We present a novel framework which integrates visual representations with pretrained language models and planning.
Our model translates the image sequence into a visual prefix, a sequence of continuous embeddings which language models can interpret.
It also leverages a sequence of question-answer pairs as a blueprint plan for selecting salient visual concepts and determining how they should be assembled into a narrative.
arXiv Detail & Related papers (2023-10-08T21:45:34Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - Summarize and Generate to Back-translate: Unsupervised Translation of
Programming Languages [86.08359401867577]
Back-translation is widely known for its effectiveness for neural machine translation when little to no parallel data is available.
We propose performing back-translation via code summarization and generation.
We show that our proposed approach performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-23T08:20:41Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
We introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process.
We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings.
arXiv Detail & Related papers (2021-05-04T06:40:33Z) - Outline to Story: Fine-grained Controllable Story Generation from
Cascaded Events [39.577220559911055]
We propose a new task named "Outline to Story" (O2S) as a test bed for fine-grained controllable generation of long text.
We then create datasets for future benchmarks, built by state-of-the-art keyword extraction techniques.
arXiv Detail & Related papers (2021-01-04T08:16:21Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.