A quantum walk simulation of extra dimensions with warped geometry
- URL: http://arxiv.org/abs/2105.01375v1
- Date: Tue, 4 May 2021 09:06:32 GMT
- Title: A quantum walk simulation of extra dimensions with warped geometry
- Authors: Andreu Angl\'es-Castillo and Armando P\'erez
- Abstract summary: We investigate the properties of a quantum walk which can simulate the behavior of a spin $1/2$ particle in a model with an ordinary spatial dimension.
In particular, we observe that the probability distribution becomes, at large time steps, concentrated near the "low energy" brane.
In this way, we obtain a localization effect whose strength is controlled by a warp coefficient.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the properties of a quantum walk which can simulate the
behavior of a spin $1/2$ particle in a model with an ordinary spatial
dimension, and one extra dimension with warped geometry between two branes.
Such a setup constitutes a $1+1$ dimensional version of the Randall-Sundrum
model, which plays an important role in high energy physics. In the continuum
spacetime limit, the quantum walk reproduces the Dirac equation corresponding
to the model, which allows to anticipate some of the properties that can be
reproduced by the quantum walk. In particular, we observe that the probability
distribution becomes, at large time steps, concentrated near the "low energy"
brane, and can be approximated as the lowest eigenstate of the continuum
Hamiltonian that is compatible with the symmetries of the model. In this way,
we obtain a localization effect whose strength is controlled by a warp
coefficient. In other words, here localization arises from the geometry of the
model, at variance with the usual effect that is originated from random
irregularities, as in Anderson localization. In summary, we establish an
interesting correspondence between a high energy physics model and localization
in quantum walks.
Related papers
- Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Variational manifolds for ground states and scarred dynamics of blockade-constrained spin models on two and three dimensional lattices [0.0]
We introduce a variational manifold of simple tensor network states for the study of a family of constrained models that describe spin-1/2 systems.
Our method can be interpreted as a generalization of mean-field theory to constrained spin models.
arXiv Detail & Related papers (2023-11-15T13:52:21Z) - Entangling dynamics from effective rotor/spin-wave separation in
U(1)-symmetric quantum spin models [0.0]
Non-equilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space.
A particularly important class of evolutions is the one governed by U(1) symmetric Hamiltonians.
We show that the dynamics of the OAT model can be closely reproduced by systems with power-lawdecaying interactions.
arXiv Detail & Related papers (2023-02-18T09:37:45Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Quantum and classical branching flow in space and time [0.0]
Branching flow -- a phenomenon known for steady wave propagation in two-dimensional weak correlated random potential is also present in Schr"odinger equation for a single particle in one dimension.
We explore the two-dimensional parameter space of this model using numerical simulations and identify its classical regions.
arXiv Detail & Related papers (2022-09-03T14:40:18Z) - Localization and melting of interfaces in the two-dimensional quantum
Ising model [0.0]
We study the non-equilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model.
We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system.
arXiv Detail & Related papers (2022-03-17T17:48:51Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.