Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data
- URL: http://arxiv.org/abs/2105.01820v1
- Date: Wed, 5 May 2021 01:20:03 GMT
- Title: Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data
- Authors: Qi Dai, Di Shen, Jinhong Wang, Suzhou Huang and Dimitar Filev
- Abstract summary: We show how the model can be inverted to estimate driver preferences from naturalistic traffic data.
One distinct advantage of our approach is the drastically reduced computational burden.
- Score: 5.926030548326619
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding human driving behaviors quantitatively is critical even in the
era when connected and autonomous vehicles and smart infrastructure are
becoming ever more prevalent. This is particularly so as that mixed traffic
settings, where autonomous vehicles and human driven vehicles co-exist, are
expected to persist for quite some time. Towards this end it is necessary that
we have a comprehensive modeling framework for decision-making within which
human driving preferences can be inferred statistically from observed driving
behaviors in realistic and naturalistic traffic settings. Leveraging a recently
proposed computational framework for smart vehicles in a smart world using
multi-agent based simulation and optimization, we first recapitulate how the
forward problem of driving decision-making is modeled as a state space model.
We then show how the model can be inverted to estimate driver preferences from
naturalistic traffic data using the standard Kalman filter technique. We
explicitly illustrate our approach using the vehicle trajectory data from
Sugiyama experiment that was originally meant to demonstrate how stop-and-go
shockwave can arise spontaneously without bottlenecks. Not only the estimated
state filter can fit the observed data well for each individual vehicle, the
inferred utility functions can also re-produce quantitatively similar pattern
of the observed collective behaviors. One distinct advantage of our approach is
the drastically reduced computational burden. This is possible because our
forward model treats driving decision process, which is intrinsically dynamic
with multi-agent interactions, as a sequence of independent static optimization
problems contingent on the state with a finite look ahead anticipation.
Consequently we can practically sidestep solving an interacting dynamic
inversion problem that would have been much more computationally demanding.
Related papers
- Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
We introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques.
Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality.
arXiv Detail & Related papers (2024-08-06T13:58:56Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
We pioneer a novel behavior-aware trajectory prediction model (BAT)
Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules.
We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets.
arXiv Detail & Related papers (2023-12-11T13:27:51Z) - Decision-Making for Autonomous Vehicles with Interaction-Aware
Behavioral Prediction and Social-Attention Neural Network [7.812717451846781]
We propose a behavioral model that encodes drivers' interacting intentions into latent social-psychological parameters.
We develop a receding-horizon optimization-based controller for autonomous vehicle decision-making.
We conduct extensive evaluations of the proposed decision-making module, in forced highway merging scenarios.
arXiv Detail & Related papers (2023-10-31T03:31:09Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
We propose HATN, a hierarchical framework to generate high-quality, transferable, and adaptable predictions for driving behaviors.
We demonstrate our algorithms in the task of trajectory prediction for real traffic data at intersections and roundabouts from the INTERACTION dataset.
arXiv Detail & Related papers (2022-02-10T16:46:24Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.