BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving
- URL: http://arxiv.org/abs/2312.06371v2
- Date: Fri, 15 Dec 2023 06:42:42 GMT
- Title: BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving
- Authors: Haicheng Liao, Zhenning Li, Huanming Shen, Wenxuan Zeng, Dongping
Liao, Guofa Li, Shengbo Eben Li, Chengzhong Xu
- Abstract summary: We pioneer a novel behavior-aware trajectory prediction model (BAT)
Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules.
We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets.
- Score: 24.123577277806135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to accurately predict the trajectory of surrounding vehicles is a
critical hurdle to overcome on the journey to fully autonomous vehicles. To
address this challenge, we pioneer a novel behavior-aware trajectory prediction
model (BAT) that incorporates insights and findings from traffic psychology,
human behavior, and decision-making. Our model consists of behavior-aware,
interaction-aware, priority-aware, and position-aware modules that perceive and
understand the underlying interactions and account for uncertainty and
variability in prediction, enabling higher-level learning and flexibility
without rigid categorization of driving behavior. Importantly, this approach
eliminates the need for manual labeling in the training process and addresses
the challenges of non-continuous behavior labeling and the selection of
appropriate time windows. We evaluate BAT's performance across the Next
Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD),
and Macao Connected Autonomous Driving (MoCAD) datasets, showcasing its
superiority over prevailing state-of-the-art (SOTA) benchmarks in terms of
prediction accuracy and efficiency. Remarkably, even when trained on reduced
portions of the training data (25%), our model outperforms most of the
baselines, demonstrating its robustness and efficiency in predicting vehicle
trajectories, and the potential to reduce the amount of data required to train
autonomous vehicles, especially in corner cases. In conclusion, the
behavior-aware model represents a significant advancement in the development of
autonomous vehicles capable of predicting trajectories with the same level of
proficiency as human drivers. The project page is available at
https://github.com/Petrichor625/BATraj-Behavior-aware-Model.
Related papers
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving [21.130543517747995]
This paper introduces the Human-Like Trajectory Prediction (H) model, which adopts a teacher-student knowledge distillation framework.
The "teacher" model mimics the visual processing of the human brain, particularly the functions of the occipital and temporal lobes.
The "student" model focuses on real-time interaction and decision-making, capturing essential perceptual cues for accurate prediction.
arXiv Detail & Related papers (2024-02-29T15:22:26Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
This study proposes a trajectory prediction framework that combines Mixture Density Networks (MDN) and considers the driving heterogeneity to provide probabilistic and personalized predictions.
The proposed framework is tested based on a wide-range vehicle trajectory dataset.
arXiv Detail & Related papers (2023-12-19T12:56:56Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
It is critical for Autonomous Vehicles to have the ability to predict pedestrians' short-term and immediate actions in real-time.
In this work, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction.
The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction.
arXiv Detail & Related papers (2023-05-22T14:03:38Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
Trajectory prediction is one of the key components of the autonomous driving software stack.
In this paper, a self-aware trajectory prediction method is proposed.
The proposed method performed well in terms of self-awareness, memory footprint, and real-time performance.
arXiv Detail & Related papers (2023-05-16T03:53:23Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
We show how the model can be inverted to estimate driver preferences from naturalistic traffic data.
One distinct advantage of our approach is the drastically reduced computational burden.
arXiv Detail & Related papers (2021-05-05T01:20:03Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.