Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation
- URL: http://arxiv.org/abs/2105.01839v1
- Date: Wed, 5 May 2021 02:27:25 GMT
- Title: Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation
- Authors: Guang Feng, Zhiwei Hu, Lihe Zhang, Huchuan Lu
- Abstract summary: We propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network.
A co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features.
The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance without any post-processing.
- Score: 87.01669173673288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, referring image segmentation has aroused widespread interest.
Previous methods perform the multi-modal fusion between language and vision at
the decoding side of the network. And, linguistic feature interacts with visual
feature of each scale separately, which ignores the continuous guidance of
language to multi-scale visual features. In this work, we propose an encoder
fusion network (EFN), which transforms the visual encoder into a multi-modal
feature learning network, and uses language to refine the multi-modal features
progressively. Moreover, a co-attention mechanism is embedded in the EFN to
realize the parallel update of multi-modal features, which can promote the
consistent of the cross-modal information representation in the semantic space.
Finally, we propose a boundary enhancement module (BEM) to make the network pay
more attention to the fine structure. The experiment results on four benchmark
datasets demonstrate that the proposed approach achieves the state-of-the-art
performance under different evaluation metrics without any post-processing.
Related papers
- MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - Cross-aware Early Fusion with Stage-divided Vision and Language Transformer Encoders for Referring Image Segmentation [15.676384275867965]
Referring segmentation aims to segment a target object related to a natural language expression.
Recent models have focused on the early fusion with the language features at the intermediate stage of the vision encoder.
This paper proposes a novel architecture, Cross-aware early fusion with stage-divided Vision and Language Transformer encoders.
arXiv Detail & Related papers (2024-08-14T13:17:41Z) - Masked Graph Learning with Recurrent Alignment for Multimodal Emotion Recognition in Conversation [12.455034591553506]
Multimodal Emotion Recognition in Conversation (MERC) can be applied to public opinion monitoring, intelligent dialogue robots, and other fields.
Previous work ignored the inter-modal alignment process and the intra-modal noise information before multimodal fusion.
We have developed a novel approach called Masked Graph Learning with Recursive Alignment (MGLRA) to tackle this problem.
arXiv Detail & Related papers (2024-07-23T02:23:51Z) - Fuse & Calibrate: A bi-directional Vision-Language Guided Framework for Referring Image Segmentation [8.383431263616105]
We introduce FCNet, a framework that employs a bi-directional guided fusion approach where both vision and language play guiding roles.
Specifically, we use a vision-guided approach to conduct initial multi-modal fusion, obtaining multi-modal features that focus on key vision information.
We then propose a language-guided calibration module to further calibrate these multi-modal features, ensuring they understand the context of the input sentence.
arXiv Detail & Related papers (2024-05-18T07:21:12Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level.
We propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE)
BTMAE learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level.
arXiv Detail & Related papers (2023-11-29T07:33:38Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Modeling Motion with Multi-Modal Features for Text-Based Video
Segmentation [56.41614987789537]
Text-based video segmentation aims to segment the target object in a video based on a describing sentence.
We propose a method to fuse and align appearance, motion, and linguistic features to achieve accurate segmentation.
arXiv Detail & Related papers (2022-04-06T02:42:33Z) - Deeply Interleaved Two-Stream Encoder for Referring Video Segmentation [87.49579477873196]
We first design a two-stream encoder to extract CNN-based visual features and transformer-based linguistic features hierarchically.
A vision-language mutual guidance (VLMG) module is inserted into the encoder multiple times to promote the hierarchical and progressive fusion of multi-modal features.
In order to promote the temporal alignment between frames, we propose a language-guided multi-scale dynamic filtering (LMDF) module.
arXiv Detail & Related papers (2022-03-30T01:06:13Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
We propose a novel graph-based multi-modal fusion encoder for NMT.
We first represent the input sentence and image using a unified multi-modal graph.
We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations.
arXiv Detail & Related papers (2020-07-17T04:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.