Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation
- URL: http://arxiv.org/abs/2311.17952v1
- Date: Wed, 29 Nov 2023 07:33:38 GMT
- Title: Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation
- Authors: Minhyeok Lee, Dogyoon Lee, Jungho Lee, Suhwan Cho, Heeseung Choi,
Ig-Jae Kim, Sangyoun Lee
- Abstract summary: Referring Image (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level.
We propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE)
BTMAE learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level.
- Score: 26.262887028563163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring Image Segmentation (RIS) aims to segment target objects expressed
in natural language within a scene at the pixel level. Various recent RIS
models have achieved state-of-the-art performance by generating contextual
tokens to model multimodal features from pretrained encoders and effectively
fusing them using transformer-based cross-modal attention. While these methods
match language features with image features to effectively identify likely
target objects, they often struggle to correctly understand contextual
information in complex and ambiguous sentences and scenes. To address this
issue, we propose a novel bidirectional token-masking autoencoder (BTMAE)
inspired by the masked autoencoder (MAE). The proposed model learns the context
of image-to-language and language-to-image by reconstructing missing features
in both image and language features at the token level. In other words, this
approach involves mutually complementing across the features of images and
language, with a focus on enabling the network to understand interconnected
deep contextual information between the two modalities. This learning method
enhances the robustness of RIS performance in complex sentences and scenes. Our
BTMAE achieves state-of-the-art performance on three popular datasets, and we
demonstrate the effectiveness of the proposed method through various ablation
studies.
Related papers
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - RISAM: Referring Image Segmentation via Mutual-Aware Attention Features [13.64992652002458]
Referring image segmentation (RIS) aims to segment a particular region based on a language expression prompt.
Existing methods incorporate linguistic features into visual features and obtain multi-modal features for mask decoding.
We propose MARIS, a referring image segmentation method that leverages the Segment Anything Model (SAM) and introduces a mutual-aware attention mechanism.
arXiv Detail & Related papers (2023-11-27T11:24:25Z) - Beyond One-to-One: Rethinking the Referring Image Segmentation [117.53010476628029]
Referring image segmentation aims to segment the target object referred by a natural language expression.
We propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches.
In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target.
Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature.
arXiv Detail & Related papers (2023-08-26T11:39:22Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
We present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features.
Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment.
arXiv Detail & Related papers (2022-12-27T09:13:19Z) - ABINet++: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Spotting [121.11880210592497]
We argue that the limited capacity of language models comes from 1) implicit language modeling; 2) unidirectional feature representation; and 3) language model with noise input.
We propose an autonomous, bidirectional and iterative ABINet++ for scene text spotting.
arXiv Detail & Related papers (2022-11-19T03:50:33Z) - Image Captioning based on Feature Refinement and Reflective Decoding [0.0]
This paper introduces an encoder-decoder-based image captioning system.
It extracts spatial and global features for each region in the image using the Faster R-CNN with ResNet-101 as a backbone.
The decoder consists of an attention-based recurrent module and a reflective attention module to enhance the decoder's ability to model long-term sequential dependencies.
arXiv Detail & Related papers (2022-06-16T07:56:28Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Primitive Representation Learning for Scene Text Recognition [7.818765015637802]
We propose a primitive representation learning method that aims to exploit intrinsic representations of scene text images.
A Primitive REpresentation learning Network (PREN) is constructed to use the visual text representations for parallel decoding.
We also propose a framework called PREN2D to alleviate the misalignment problem in attention-based methods.
arXiv Detail & Related papers (2021-05-10T11:54:49Z) - Exploring Explicit and Implicit Visual Relationships for Image
Captioning [11.82805641934772]
In this paper, we explore explicit and implicit visual relationships to enrich region-level representations for image captioning.
Explicitly, we build semantic graph over object pairs and exploit gated graph convolutional networks (Gated GCN) to selectively aggregate local neighbors' information.
Implicitly, we draw global interactions among the detected objects through region-based bidirectional encoder representations from transformers.
arXiv Detail & Related papers (2021-05-06T01:47:51Z) - Enhanced Modality Transition for Image Captioning [51.72997126838352]
We build a Modality Transition Module (MTM) to transfer visual features into semantic representations before forwarding them to the language model.
During the training phase, the modality transition network is optimised by the proposed modality loss.
Experiments have been conducted on the MS-COCO dataset demonstrating the effectiveness of the proposed framework.
arXiv Detail & Related papers (2021-02-23T07:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.